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Abstract
Large Language Models (LLMs) showed impressive generation abilities and are now integrated in many real-world applications.
However, LLMs also tend to memorize information, including Personally Identifiable Information (PII), which can be learned
and generated during inference, posing a risk to users’ privacy. In this context, Model Editing techniques have been proposed
recently to prevent the leakage of private information by modifying LLMs’ parameters directly while preserving their
generation capabilities. In this work, we show an application of Model Editing for Privacy Protection in the context of Italian
data on Velvet, a multilingual LLM recently released. In particular, we focus on protection against Training Data Extraction
(TDE) attacks. Empirical results from the experiments show that model editing techniques can be effective in mitigating
privacy leakage in LLMs, even for Italian data, while preserving their multilingual generation capabilities.
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1. Introduction
Large Language Models (LLMs) showed impressive gen-
eration capabilities in managing various tasks, and they
are now integrated into many real-world applications.
Given the popularity and potential of these models, sev-
eral open-weight LLMs have been released to the public
in the last years, including multilingual ones. Following
this trend, LLMs that support the Italian language have
also been made available [1], thus allowing to manage
tasks even in Italian.

However, since LLMs are now employed in many ser-
vices, they can be affected by some well-known issues,
such as toxicity or privacy leakage [2], which can have
an important negative impact on model performance.
These problems raised concerns about privacy due to the
possible presence of undetected private information in
training data. Prior research showed that these models
tend to memorize training data [3, 4, 5, 6], thus they are
prone to memorizing Personal Identifiable Information
(PII), which might be disclosed during the text generation.
Italian LLMs can also be affected, as data used for train-
ing these models is often scraped from public web pages
[7, 8], and although processes to identify and remove
private information are used to clean data, PII could still
be present.

Privacy is critical for LLMs deployed as services, rais-
ing concerns about privacy leakage and thus requiring
attention. Carlini et al. [3] showed that extracting private
information from an LLM is possible by prompting tex-
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tual sequences from training data. The success of these
attacks is evidence that the privacy of real individuals is
at risk, so methods to prevent leakage of PII are necessary.
Recently, many solutions have been proposed to mitigate
this phenomenon, such as machine unlearning [9, 10].
Alternatively, Model Editing approaches showed promis-
ing effects for protecting the privacy of users [11, 12, 13].
The application of these methods allows us to modify
the knowledge encoded in the LLMs by breaking the
association between some memorized prompts and the
corresponding PII. Among these methods, Private Mem-
orization Editing (PME) [13] is an approach that exploits
the memorization mechanism of transformers to modify
the association between a prompt and its related private
information, showing its effectiveness in protecting LLMs
from TDE attacks.

In this work, we show an application of PME [13] to
protect users’ privacy for Italian data in LLMs. We fo-
cus on Velvet-2B1, a recent multilingual LLM for English
and Italian languages. Even though the training data
has been curated to remove PII, the model may learn
some information during training. Our main objective
is to understand whether model editing can be extended
and used to protect users’ privacy whose PII might be
included in training data obtained from public datasets.
With PME, we can define an automatic process for ob-
scuring private information and making Velvet robust to
external attacks.

We evaluate the effectiveness of our approach through
an experimental process to make Velvet more robust
against external attacks aimed at prompting the LLM to
generate memorized PII. We obtain Training Data Extrac-
tion (TDE) attacks from a subset of documents in Italian

1https://huggingface.co/Almawave/Velvet-2B
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used to train Velvet to induce the model to leak PII; in par-
ticular, we focus on email addresses (Section 4.1). Then,
we adapt PME to Velvet and edit the model to protect
the LLM against identified TDE attacks (Section 4.2). Fi-
nally, we measure the effectiveness of our approach by
observing the behaviour of Velvet against TDE attacks,
and we evaluate the preservation of post-edit Velvet’s
multilingual generation capabilities to ensure the edit
had no negative impact on the model (Section 4.3). Re-
sults show that model editing can be adapted to Italian
data and make Velvet more robust against TDE attacks
by notably reducing the accuracy of attacks (Section 5.1).
In addition, evaluation of post-edit Velvet suggests that
the edit does not affect multilingual capabilities for both
English and Italian languages (Section 5.2).

2. Background
Given the large amount of data that is necessary to train
an LLM, the risks connected to privacy violations have
been largely investigated (Section 2.1). We describe what
mechanisms in LLMs have been identified to control
model predictions (Section 2.2), and how these insights
allow editing some undesired predictions without the
need of re-training the model (Section 2.3).

2.1. LLMs & Privacy
As LLMs require large amounts of data for training, some
undesirable information may have been included in the
training material inadvertently: a person’s name, address,
email address, social security number, phone number, as
well as any other data that, when combined, could lead
to identification of individuals, are considered private in-
formation and should not be further disseminated during
inference by an LLM. This kind of information, defined
as Personal Identifiable Information (PII), can in fact be
used to identify a specific individual, and threats their
privacy if disseminated.

However, once a PII is included in the training mate-
rial, an LLM can leak it during inference. In fact, LLM
may memorize that information [14, 15, 16] and conse-
quently cause privacy leaks at inference time. A number
of attacks have been designed to exploit this tendency
and extract private information from LLMs [2, 17, 18].
For LLMs, even in black-box access the right prompt may
be sufficient to obtain private information. While some
attacks require the attacker to craft an adversarial input
for the model [19, 20], other attacks do not even rely on
potentially harmful prompts [3, 6, 4, 5].

Developing techniques for the preservation of individ-
uals privacy is central to make LLMs more robust, and
trustworthy.

2.2. Knowledge Mechanism of
Transformers

Transformer-based Language Model Predictions
We consider the forward pass of a Transformer-based
decoder-only model ℳ of 𝐿 layers and describe it in
terms of its sub-components on a prompt 𝑝. Given the
tokenized prompt 𝑋 = [𝑥1, ..., 𝑥𝑛] and their correspond-
ing input embeddings 𝑋(0), a model builds the predic-
tion for the next token 𝑥𝑛+1 with an iterative refinement
across layers. At a given layer 𝑙, given the Attention
Block as Attn, the layer normalization as LN and the
Feed Forward block FFN, the output of that layer 𝑋(𝑙)

is computed as:

∀𝑙 ∈ {1, . . . , 𝐿} :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴(𝑙) = Attn(LN(𝑋(𝑙−1)))

𝑋̃
(𝑙)

= 𝑋(𝑙−1) +𝐴(𝑙)

𝐻(𝑙) = FFN(LN(𝑋̃
(𝑙)
))

𝑋(𝑙) = 𝑋̃
(𝑙)

+𝐻(𝑙)

(1)
On the last position 𝑛, at the last layer 𝐿, the hidden rep-
resentation 𝑥

(𝐿)
𝑛 is projected by a matrix 𝑈 ∈ R𝑑×|𝑉 |

onto the vocabulary 𝑉 space. The scores obtained, nor-
malized by a softmax function 𝜎, predict the next token:

ℳ(𝑋) = argmax𝜎
(︁
𝑥(𝐿)
𝑛 𝑈

)︁
= 𝑥𝑛+1

We aim to understand what are the mechanisms that
control for the generation of next token, and if it is pos-
sible to alter them to modify the predictions on the next
token when the model leaks private information.

FFN Layers as Knowledge Memories Feed Forward
blocks FFN play a crucial role in the generation mech-
anism of the model, and not only because they account
for most of the parameters of the network. The inter-
pretation of the Feed-Forward block in a Transformer
model is that it implements a mapping of paired keys
to values [21, 22]. Geva et al. [21] notice that, with the
exception of activation function that is usually a ReLU
rather than a softmax, the equation for the Feed Forward
layer reminds the one that describes a neural memory
[23]. The Feed Forward block is in fact composed of

two matrices, 𝑊 (𝑙)
𝑖𝑛 ,𝑊

(𝑙)
𝑜𝑢𝑡

𝑇
∈ R𝑑×𝑑1 and an activation

function 𝑓 that process each position 𝑖 ∈ [1, ..., 𝑛] of
the input independently from one another. The output
ℎ
(𝑙)
𝑛 of the Feed Forward block at the 𝑛-th position of the

input is computed as follow:

ℎ(𝑙)
𝑛 = 𝑓

(︁
𝑥̃(𝑙)𝑊

(𝑙)
𝑖𝑛

)︁
𝑊

(𝑙)
𝑜𝑢𝑡 (2)

where 𝑥̃(𝑙) is the sum output of the Attention Block and
the output of the previous layer as in Equation 1. The



keys of the memory are produced by the output of 𝑊 (𝑙)
𝑖𝑛

and the non-linear function 𝑓 , while the values are the
corresponding columns in 𝑊

(𝑙)
𝑜𝑢𝑡.

2.3. Editing Knowledge of LLMs
In the last years, there was a major interest around al-
ternative methods to modify specific behaviors of LLMs
without retraining the entire model from scratch. Based
on the insights about the knowledge mechanism of trans-
formers, the research area of knowledge editing has been
flourishing, with the number of methods and approaches
growing further.

Currently, knowledge editing methods can be roughly
divided in two categories: parameter-preserving and
parameter-editing methods [24]. While parameter-
preserving methods rely on external adapters or memo-
ries to intervene whenever there is a specific situation
requiring a different response, parameter-editing meth-
ods are based on the theory about the knowledge mecha-
nism of transformers and modify the parameters of the
LLM directly, without the need of external modules like
parameter-preserving solutions.

We focus on parameter-editing methods: basically,
given an LLM ℳ𝜃 with parameters 𝜃, parameter-editing
methods aim at finding a shift in parameters ∆ to obtain
a new model 𝑀𝜃+Δ, which allows to modify a specific
prediction while preserving the non-target generation
capabilities. ROME [25] and MEMIT [26], in particular,
are parameter-editing approaches designed to edit the
LLMs’ parameters in a localized manner and are based on
the interpretation of Feed Forward layers as memories, as
introduced in Section 2.2. Under this interpretation, then,
the matrix 𝑊 (𝑙)

𝑜𝑢𝑡 is optimizing the mapping between keys
and values, that is:

𝑊
(𝑙)
𝑜𝑢𝑡 = 𝑎𝑟𝑔min̂︁𝑊

∑︁
(𝑘0,𝑣0)

||̂︁𝑊𝑘0 − 𝑣0||2 (3)

with 𝑘0 ∈ 𝐾0 being a set of keys to memorize and
𝑣0 ∈ 𝑉0 the corresponding values [25, 26, 27]. Given
the linearity of the system in Equation 3, the optimal
solution can be computed as:

𝑊
(𝑙)
𝑜𝑢𝑡 = 𝑉0𝐾

𝑇
0 (𝐾0𝐾

𝑇
0 )−1 (4)

Additionally, a closed-form equation can be found to
calculate the edit to introduce new keys and values into
the mapping [25, 26]. Given a representation of keys 𝐾0

and values 𝑉0 stored in that matrix, and the representa-
tions for the new keys 𝐾* and values 𝑉 * to store.

∆(𝑙) = (𝑉 * −𝑊
(𝑙)
𝑜𝑢𝑡𝐾

*)𝐾*𝑇 (𝐾0𝐾0
𝑇 +𝐾*𝐾*𝑇 )−1

(5)
The term 𝑉 * − 𝑊

(𝑙)
𝑜𝑢𝑡𝐾

* represents the residual be-
tween the new desired values 𝑉 * and the old values

currently stored in 𝑊
(𝑙)
𝑜𝑢𝑡 for the new keys 𝐾*. Since we

have𝐾* ⊆ 𝐾0 because the new keys are representations
already stored in 𝑊

(𝑙)
𝑜𝑢𝑡, and the new values 𝑉 *

0 satisfy
𝑉 *
0 ⊆ 𝑉0, we can define 𝑊

(𝑙)
𝑜𝑢𝑡𝐾

* = 𝑉 *
0 . The equation

for ∆(𝑙) can be written as:

∆(𝑙) = (𝑉 * − 𝑉 *
0 )𝐾*𝑇 (𝐾0𝐾0

𝑇 +𝐾*𝐾*𝑇 )−1 (6)

We will use the matrix ∆(𝑙) to edit the memorized map-
ping in layer 𝑙, without retraining.

Since we do not have access to 𝐾0, Meng et al. [26]
assumes that this representation can be modeled with a
random sample of inputs, so 𝐾0𝐾

𝑇
0 can be defined as

follows:

𝐶
(𝑙)
0 = 𝜆 · E[𝑘𝑘𝑇 ] ≜ 𝐾0𝐾0

𝑇 , (7)

where 𝜆 · E[𝑘𝑘𝑇 ] is an uncentered covariance statistics
computed on an empirical sample of vector inputs to the
layer. In this paper, we refer to it with 𝐶0 rather than
𝐶

(𝑙)
0 for simplicity.

2.4. Model Editing for Privacy
Preservation

In recent studies, model editing techniques have been
applied to the context of privacy protection.

Wu et al. [11] propose DEPN, which is a method that
locates neurons associated with private information, and
then edits their corresponding activations to remove their
contribution to prediction.

Patil et al. [28] showed an application of ROME [25]
and MEMIT [26] to remove private information from
FFN layers of transformers. This approach exploits the
association mechanism to break the associations leading
to the leakage of private information.

Venditti et al. [12] propose PAE, a data-driven ap-
proach based on the editing mechanism of MEMIT, aim-
ing to break the association between an individual and
their corresponding PIIs. The method uses prompt tem-
plates filled with the information about an individual and
their corresponding PII, to replace the private informa-
tion with a dummy PII, thus preventing the leakage of
the real PII.

Ruzzetti et al. [13] propose PME an automatic approach
taking advantage of the memorization mechanism in
LLMs. This approach basically uses memorized prompts
inducing privacy violation to remove associated PIIs. Un-
like other locate-and-edit methods, PME distributes the
residual for the editing among all the FFN layers of the
transformer. The main advantage of this method is that
it can be used automatically on collected prompts with-
out the need of further manual analysis to determine
the source of the knowledge, allowing for an automatic
algorithm for privacy protection.



In this paper, we apply PME because of its advantages,
in particular the fact that it does not rely on assumptions
such as which layers to modify or which part of a text
retrieves the critical information, thus allowing for an
automated process.

3. Application and Method

3.1. PII Leakage via Training Data
Extraction attacks

PII is private information that may have been inadver-
tently included in the training dataset and can be ex-
tracted from an LLM using Training Data Extraction
attacks (TDE) [3, 4, 5, 6]. In the initial formulation of
TDE attacks, Carlini et al. [3] demonstrate that black-box
access to an LLM can be sufficient to extract memorized
information from a model: when prompted with a con-
text that has been included in the training material, the
target LLM tends to generate verbatim the continuation
of the original document. Among the generated verbatim
memorized content, a model may also generate private
information that should not be disseminated.

Formally, given a model ℳ, a string 𝑠 is 𝑘-extractable
memorized if there exists a context string 𝑐 of 𝑘 tokens
such that the concatenation of [𝑐 || 𝑠] is contained in the
training material forℳ andℳ generates 𝑠 exactly when
prompted with 𝑐 in greedy decoding. When the context
exactly matches a sequence of the training material, the
success of the attack is maximized [4], and since this is
the most informative setting that the attacker can obtain,
this is the worst-case scenario.

The success of the attack increases as the attacker
gets more information regarding the training material:
one crucial aspect is the length 𝑘 of the context that
the model is fed with [5, 4]: the longer the context, the
larger the probability of emission of verbatim memorized
information.

Since LLMs have been shown to memorize PII rather
than associating them with an individual identity [5, 12,
2], those attacks represent one of the crucial challenges
to protect individuals whom information have been in-
advertently added to the training material of an LLM.

Hence, we initially perform TDE attacks against our
target model: we simulate an informed attacker who
has some background knowledge regarding the training
material, with increasing level of information. For a
given PII, we collect the context that precede it in the
training materials, and produce 50, 100, and 200-tokens-
long sequences (see Section 4.1 for further details) as we
expect that a more informed attacker may obtain larger
volume of information. The model is then prompted to
generate the subsequent 100 tokens: the attack succeeds
if – in greedy decoding – the generated PII matches the

original PII in the training material: the evaluation is
rigorous since a strict match between the generated PII
and the one found in the training material is required.

3.2. PME for Automatic Privacy
Mitigation

To address the threats posed by TDE attacks, we adopt
Private Memorization Editing (PME) [13], a model editing
strategy that aims to leverage the memorization tenden-
cies of LLMs as a defense strategy. The objective of the
method is to reduce the success of TDE attacks, and hence
to replace the memorized PII with a semantically equiv-
alent, but privacy-preserving information. PME applies
the editing on the Feed Forward layers of the models,
similarly to other model editing techniques like ROME
[25] and MEMIT [26].

As discussed in Section 2.3, once one knows the cor-
rect representation for keys and values that the 𝑊

(𝑙)
𝑜𝑢𝑡

encodes, it is possible to apply the closed form solution
in Equation 6 to perform the update. To compute the
correct representation for keys and values, PME directly
exploits training material verbatim memorized from a
model.

When the model is prompted with a context 𝑐 that is
included in the training material that causes the gener-
ation of a PII, PME edits the model to obtain a privacy-
preserving output instead. In each layer, the keys are the
hidden representation that the model computes for the

context prompt as in Equation 2, so 𝑘(𝑙) = 𝑓
(︁
𝑥̃(𝑙)𝑊

(𝑙)
𝑖𝑛

)︁
.

For the values, the new privacy-preserving value
should be encoded with an appropriate vector represen-
tation. For this reason, PME initially optimizes a hidden
representation 𝑣* in the last layer of the model: using
Gradient Descent, PME optimizes 𝑣* so that, once de-
coded with the projection matrix on the vocabulary, it
gives the highest probability of generating a dummy,
privacy-preserving value.

Then, the underlying hypothesis in PME is that each
layer should contribute to the generation of this last-
layer representation 𝑣*. PME mimics the generation of
the PII: with a forward pass on the memorized context,
the method quantifies how much each layer contributes
to the generation of the memorized PII. Instead of rely-
ing on Causal Mediation Analysis as in MEMIT [26] or
other localization techniques that have been shown to
not inform the edit [29, 30] for identifying a restricted
number of contributing layers, a contribution coefficient is
computed for each layer following a geometric approach.
Since the computation of a Transformer model can be
described as a sum of its sub-components at each layer
[31, 32], PME computes the contribution coefficient 𝑤(𝑙)

of each layer as the projection of that layer Feed Forward
output onto the last layer Feed Forward representation:



the larger the projection, the larger the impact of that
layer on the overall sum. This contribution coefficient –
rescaled to obtain a sum of one across different layers –
is then used to represent a fraction of 𝑣*, proportionally
to the contribution coefficient 𝑤(𝑙) of that layer, that is, at
each layer the value 𝑣(𝑙) = 𝑤(𝑙)𝑣*

Once the correct representation for keys and privacy
preserving values is computed, then the edit can be per-
formed as in Equation 6, and the post-edit model should
not generate the target PII under TDE attacks.

4. Experimental Setting
In this section, we discuss the experimental setting we
use to assess the effectiveness of our approach. Specif-
ically, we define: (1) the process for data preparation
to obtain the TDE attacks and relative leaked informa-
tion (Section 4.1), (2) how PME is adapted and applied
to Velvet (Section 4.2), and (3) how we evaluate the ef-
fectiveness of our privacy protection approach and the
post-edit preservation of Velvet’s capabilities (Section
4.3). For these experiments, we focus on email addresses
of Italian data as PII, and Velvet-2B as our target LLM.

4.1. Data Preparation
Training Data Extraction Attacks As we discussed
in Section 3.1, Training Data Extraction attacks are based
on documents and prompts that the LLM has seen during
training, which induce a target LLM to complete the given
prompts with a text verbatim memorized by the model.
Since LLMs are prone to leak PII during generation due
to possible contamination of training data with PII, we
prepare Training Data Extraction attacks by analyzing
a subset of the training data used for Velvet. We focus
on the Italian subset of CulturaY [33], one of the public
datasets seen by Velvet during the pre-training phase.

We focus on potentially harmful prompts, since our
main objective is to study the feasibility of protecting
against TDE rather than assessing their accuracy. To do
that, we define the following protocol. We filter all docu-
ments in the dataset that contain at least one email ad-
dress in them. Then, once we obtain only documents con-
taining PII, we prepare batches of different potential TDE
attack prompts of different lengths 𝑘 ∈ {50, 100, 200},
by selecting the 𝑘 tokens preceding the identified PII.
After obtaining a set of potential attacks, we deduplicate
similar prompts. In order to select effective attacks, we
prompt Velvet-2B with the collected attacks and induce
the model to generate 100 tokens: if the email address
generated by the model for a given prompt is the one
expected as in the training data, we add it to the set of
TDE attacks.

Sample for computing PME Editing Statistics An
important step required by PME to perform the desired
edit is the uncentered covariance statistic 𝐶(𝑙)

0 described
in Eq.7. This is an estimation of the keys stored in the
corresponding 𝑙-th FFN layer, so we need to build an
empirical sample of vector inputs for the layer, which are
obtained by feeding the LLM with sample texts. Since
we are dealing with a multilingual LLM trained on both
English and Italian texts, we prepare two samples of
100k documents each from English and Italian Wikipedia
subsets of the pre-training data used for Velvet-2B. The
purpose of these samples is to understand the effects on
the editing performance of 𝐶0 computed on different
languages.

4.2. Application of PME
Mitigating Privacy Leakage Our strategy is to pre-
vent Velvet from generating memorized PIIs during infer-
ence by applying PME to Velvet on identified TDE attacks
reported in Section 4.1. PME allows to edit the relative
knowledge of PII associated with multiple memorized
prompts by modifying the LLM’s parameters directly.
The main advantage of this method is that we can edit
the TDE attacks directly and there is no need to specify
which layers are the target of the edit, unlike methods
such as MEMIT [26].

Based on this, for every attack (𝑥, 𝑦) with 𝑦 = ℳ(𝑥),
𝑥 the prompt attack and 𝑦 the leaked PII, we use PME
to edit the knowledge encoded in Velvet’s FFN layers
to force the new association (𝑥, 𝑧), where 𝑧 is the new
dummy PII mail@domain.com, which is semantically
similar to the original PII. With this method, our objec-
tive is to reduce the accuracy of attacks, modifying the
prediction of the LLM to prevent the generation of the
leaked information.

We perform the editing process with an approach
called sequential batch editing [12, 13], in which several
prompts are edited in multiple steps, with a batch of mul-
tiple examples edited at each step. For our experiments,
we fixed the batch size to 16.

Computing Multilingual 𝐶0 for PME PME [13],
ROME [25] and MEMIT [26] require a representation
of the keys 𝐾0 stored in the 𝑙-th FFN layer to apply the
formula defined in Eq.6, which can be modeled as the
quantity 𝐶

(𝑙)
0 defined in Eq.7. This quantity is obtained

by computing an uncentered covariance statistics on an
empirical sample of vector inputs to the layer when pars-
ing a sample of documents. For our experiments, we
prepare three types of 𝐶0 for PME on the text samples
described in Section 4.1:

• IT: computed on the Italian sample;
• EN: computed on the English sample;



Velvet-2B PME 𝐶0
TDE Email Attacks

Context Length Tot. Prompts Generated PII Leaked PII Attack Acc.
Pre-edit -

50

83 78 75 0.904

Post-Edit
multi 83 51 7 0.084
EN 83 51 8 0.096
IT 83 46 9 0.108

Pre-Edit -

100

380 370 341 0.897

Post-Edit
multi 380 151 16 0.042
EN 380 128 12 0.032
IT 380 157 15 0.039

Pre-Edit -

200

34 32 31 0.912

Post-Edit
multi 34 25 16 0.471
EN 34 27 17 0.5
IT 34 27 16 0.471

Table 1
Attack Accuracy results for TDE Email attacks on Pre-edit and Post-edit versions of Velvet-2B. We report the number of attacks
Tot. Prompts of length Context Length, the number of generic email addresses generated by the models Generated PII, the
quantity of email addresses leaked Leaked PII, and the 𝐶0 type used for editing PME 𝐶0.

• multi: computed on the English and Italian sam-
ples combined.

We compute these statistics for all the FFN layers of Velvet
following the same procedure carried out by Meng et al.
[26].

This statistic plays a crucial role in Eq.6, as it allows
us to determine the interaction between the new keys
and the knowledge stored in that layer. An effective com-
putation of this statistic is necessary to obtain effective
edits, and we empirically explore how different estimates
of 𝐶0 may affect the edit in a multilingual setting.

4.3. Evaluation
Post-Edit Attack Accuracy PME effectively protects
the privacy in Velvet if the parameter edit reduces the
number of successful TDE attacks against the model.
Therefore, the effectiveness of our approach is assessed
by measuring the post-edit privacy leakage effects and
comparing them with the ones of the pre-edit model.

We adopted the same measure used by Ruzzetti et al.
[13], that is, the Attack Accuracy for memorization at-
tacks. After we edit Velvet for TDE attacks of 𝑘 ∈
{50, 100, 200} context lengths, we measure the Attack
Accuracy of post-edit models and compare their scores
with the ones of the pre-edit version of Velvet. We feed
the TDE prompts to both post-edit and pre-edit version
of Velvet, and then let them generate 100 tokens: if the
generated text for each attack contains the expected PII,
then the attack is considered successful.

Post-EditMultilingualGenerationCapabilities An
important aspect of model editing methods is that they
are designed to modify specific knowledge of LLMs, while
preserving the non-related generative capabilities of the

model. For this reason, we need to determine whether
the editing had a negative impact on the multilingual
generative capabilities of our LLM, thus affecting its skills
in non-related tasks.

We adopt an automatic evaluation strategy similar to
the one used by Venditti et al. [12] to measure the reliabil-
ity of our post-edit models. We compare the generation
capabilities of the post-edit and pre-edit versions of Vel-
vet by measuring the similarity of generated texts on a
sample of prompts in terms of BLUE [34] and METEOR
[35] scores. For comparison, we consider the subsequent
50 tokens generated by each model after receiving in
input the first 100 token of each prompt of our sample.

We perform the evaluation on a sample of 500 prompts
for the English and Italian languages, which is defined
as follows:

• English sample: 100 prompts from Books3,
Wikipedia-en, and Pile-CC subsets of the Pile,
respectively;

• Italian sample: 100 prompts from Clean-C4 and
Wikipedia-it, respectively.

The composition of this sample allows to have an indica-
tion of the impact of PME editing on post-edit language
capabilities of Velvet.

We also extend the utility evaluation by measuring the
post-edit accuracy of Velvet on LAMBADA[36], one of
the tasks included in EleutherAI Language Model Eval-
uation Harness[37]. LAMBADA is used to measure the
accuracy of a model in generating the missing target word
from a passage given in input. For the evaluation, we
focus on the full test split of the dataset to measure the re-
liability of the edit. Since we are interested in evaluating
the preservation of the post-edit multilingual capabili-
ties of the model, we use both the English and Italian



PME 𝐶0
Editing Attacks Books3 (EN) Wikipedia (EN) Pile-CC (EN) Clean C4 (IT) Wikipedia (IT)
Context Prompts BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

IT
50 83

84.4 (±11.2) 87.3 (±11.2) 88.6 (±12.4) 91.1 (±10.7) 86.1 (±11.6) 89.5 (±9.4) 86.0 (±11.1) 89.8 (±9.1) 90.3 (±13.7) 93.2 (±10.0)
EN 83.6 (±11.1) 87.0 (±10.9) 90.2 (±11.6) 92.1 (±9.8) 86.2 (±12.0) 89.6 (±10.0) 82.2 (±10.4) 87.1 (±9.3) 88.1 (±13.2) 92.3 (±9.9)
multi 84.3 (±11.4) 87.5 (±11.0) 89.3 (±12.2) 91.3 (±10.4) 86.6 (±11.6) 89.9 (±9.9) 86.0 (±10.8) 89.3 (±9.4) 91.1 (±12.5) 93.0 (±10.6)
IT

100 380
82.7 (±11.4) 86.2 (±10.9) 86.1 (±14.2) 89.2 (±12.1) 84.5 (±11.8) 88.9 (±9.8) 84.4 (±10.2) 88.0 (±9.4) 90.0 (±13.1) 93.3 (±9.3)

EN 84.6 (±11.0) 87.5 (±10.8) 88.8 (±12.4) 91.1 (±10.7) 85.6 (±11.8) 89.0 (±9.6) 81.1 (±10.7) 85.9 (±9.7) 87.3 (±13.7) 91.4 (±10.3)
multi 84.4 (±11.0) 86.8 (±11.1) 87.7 (±14.1) 90.7 (±11.3) 86.2 (±11.3) 89.3 (±9.7) 84.6 (±10.7) 88.4 (±9.5) 89.3 (±13.2) 92.7 (±9.4)
IT

200 34
83.9 (±10.8) 86.9 (±10.5) 88.6 (±12.3) 91.5 (±10.2) 86.1 (±11.1) 89.1 (±10.1) 86.7 (±11.4) 89.8 (±10.1) 90.9 (±13.0) 93.6 (±9.9)

EN 84.8 (±11.9) 88.0 (±10.8) 88.2 (±12.9) 90.5 (±11.2) 87.1 (±10.8) 89.7 (±9.7) 85.3 (±10.8) 88.4 (±9.8) 90.0 (±13.0) 93.5 (±9.3)
multi 85.0 (±11.2) 87.5 (±10.8) 89.5 (±11.9) 91.5 (±10.2) 87.0 (±11.0) 89.9 (±9.8) 85.7 (±10.9) 88.4 (±9.8) 89.7 (±15.0) 92.5 (±12.6)

Table 2
Post-edit Automatic Evaluation on English and Italian text samples, compared with the pre-edit generations. PME 𝐶0 is the
type of 𝐶0 applied to edit the model, and Editing Attacks are the prompts used by PME to remove private information, with
Context the length of TDE prompts Prompts.

versions of LAMBADA to understand if the multilingual
generation capabilities of Velvet have been affected.

5. Results and Discussion

5.1. Editing reduces Privacy Risks
As we observed during the extraction and filtering phase
of TDE attacks (see Sec. 4.1), Velvet memorized some PII
contained in the pre-training data. For different context
lengths 𝑘 ∈ {50, 100, 200}, we obtained 83, 380, and
34 leaked email addresses, respectively, with the same
number of memorized prompts. Surprisingly, context of
200 tokens obtained less leaked PII than shorter prompts.
In this phase, we observe that a slightly different prompt
composition might affect the results: so in pre and post-
edit we adopt the same batch size and batch composition,
to ensure the reproducibility of the results.

The results reported in Table 1 show that PME is ef-
fective in reducing the risks of privacy leakage. The
post-edit versions of Velvet for contexts 50 and 100 are
more robust than the pre-edit model, leaking less than
9 and 16 PII with respect to 75 and 341 leaked by the
pre-edit Velvet. The effect is similar for all the versions
of 𝐶0 used by PME for editing, with minimal differences
among them: in fact, the difference is of 4 more leaked
PII at best for context 100.

The number of leaked email addresses is reduced even
for context 200 attacks, where post-edit Velvet leaked
17 PII instead of 31 of the pre-edit model. However, the
reduction here is lower compared with the other attacks,
probably due to the lower number of PII extracted during
the data processing phase.

Note that results also show that the model tends to
generate a large number of email addresses in general,
which are different from the correct ones. These differ-
ent email addresses could be model’s hallucinations, or
email addresses that follow the original one in the pre-
training corpus. However, results in terms of successfully
Leaked PII suggest that PME is still sufficiently effective
in preserving privacy on edited prompts.

Finally, we observe that the different statistics com-
puted as an approximation of 𝐶0 do not greatly affect the
post-edit attack accuracy, with a rather similar number
of leaked PII in each configuration.

5.2. Generation Capabilities are Preserved
The results reported in Table 2 show that BLEU and ME-
TEOR scores are high in general for all the different ver-
sions of 𝐶0 and attacks used for editing, and the same
observation holds for both English and Italian genera-
tion capabilities. The overall high scores suggest that
the generations of post-edit models are quite similar to
the generated texts of the pre-edit model. This aspect, as
discussed in [12], suggests that the edit is robust, because
it does not interfere with multilingual capabilities in both
English and Italian languages.

Interestingly, the scores show that there is no real con-
sensus on the type of statistics that is the best for the
English language, since the highest scores are shared
between the EN and multi 𝐶0. However, we note that
the IT version of 𝐶0 obtains lower scores than the other
two versions in general, suggesting that the IT statistics
leads to a less effective preservation of Velvet’s genera-
tion capabilities for English.

Observing the evaluation results for Italian, we notice
that IT version of 𝐶0 achieves higher BLEU and ME-
TEOR scores, suggesting that this version is necessary to
preserve the generation capabilities of Velvet for Italian.
Also, we note that the EN version of 𝐶0 tends to achieve
lower scores with respect to the other types, indicating
that this 𝐶0 is less effective for preserving the abilities
for Italian.

In general, observed results indicate that using ver-
sions of 𝐶0 computed on a different language from the
target one is less effective for preserving the generative
capabilities of the target language in post-edit. In fact, the
IT version of 𝐶0 obtained lower scores for the English
language, and the EN version of 𝐶0 was less effective for
the Italian language. Thus, these experiments suggest
that 𝐶0 should be computed on samples containing texts
in the target languages.



Velvet-2B PME 𝐶0
Editing Attacks LAMBADA
Context Prompts EN IT

Pre-edit - - 53.7 45.2

Post-Edit
multi

50 83
54.2 45.1

EN 53.9 45.2
IT 54.4 45.0

Post-Edit
multi

100 380
54.5 45.2

EN 54.7 42.1
IT 55.1 45.2

Post-Edit
multi

200 34
54.1 45.0

EN 53.9 45.9
IT 54.1 45.2

Table 3
LAMBADA scores for the pre-edit and post-edit versions of
Velvet-2B. Results for both English and Italian are comparable
with the pre-edit model, suggesting that capabilities of Velvet-
2B are preserved in post-edit.

About task performance, results reported in Table 2 of
the LAMBADA benchmark corroborate the utility preser-
vation already observed with the previous evaluation
analysis. The accuracy scores of post-edit models are
comparable with the pre-edit ones, suggesting that the
edits performed by PME do not affect considerably the
capabilities of the model. The same observation holds for
both English and Italian versions of LAMBADA. Differ-
ently from the previous analysis, there are no noticeable
losses in terms of performance with respect to the ver-
sion of 𝐶0 used for the editing, except for the Italian
score of context-100 editing with EN 𝐶0 that is lower
than the pre-edit score (42.1 vs 45.2). Hence, this result
indicates that edits performed by PME are reliable in gen-
eral, allowing privacy protection of Velvet for Italian data
without loss of task performance.

6. Conclusions and Future Work
In this work, we show an application of model editing
for protecting the privacy of Italian data on Velvet-2B, a
multilingual model trained on both Italian and English
data.

Our method is based on a recent model editing tech-
nique named Private Memorization Editing, which pre-
vents LLMs from generating memorized PII that might be
included in the training data. Results of our experiments
on privacy protection for email addresses shows that
model editing is effective in reducing the privacy risks
of Velvet, thus reducing the success of Training Data Ex-
traction (TDE) attacks, harmful prompts obtained from
the training data that are effective for extracting private
information from the original model. In addition, we
show that our approach mitigates the privacy risks while
preserving the model’s multilingual generation capabili-
ties.

In conclusion, our approach shows that we can adapt

and apply model editing techniques for privacy protec-
tion in multilingual LLMs for Italian data.

For future work, we should focus on some other as-
pects to further improve this work. Firstly, our approach
should be extended to different types of PII other than
email addresses, and further investigation is necessary to
understand the effects of the approach with different PII.
Another aspect to consider is how well PME scales with
larger models such as Velvet-14B: this other model re-
quires additional investigation, because it manages other
languages other than English and Italian, and the mag-
nitude of data used for training is larger than the one
used for Velvet-2B. Finally, the evaluation of Velvet’s
post-edit capabilities should be extended to other tasks
of the Language Model Evaluation Harness[37] or other
benchmarks, and include human evaluation to have a bet-
ter perspective on the overall quality of post-edit models
instead of relying exclusively on automatic metrics.
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