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Abstract
Sparse Autoencoders (SAEs) have become a popular technique to identify interpretable concepts in Language Models. They
have been successfully applied to several models of varying sizes, including both open and commercial ones, and have become
one of the main avenues for interpretability research. A number of approaches have been proposed to extract latents from the
model, as well as automatically provide natural language explanations for the concepts they supposedly represent. Despite
these advances, little attention has been given to applying SAEs to Italian language models. This may be due to several factors:
i) the small number of Italian models; ii) the costs associated with leveraging SAEs, which includes the training itself, as well
as the necessity to parse and assign an interpretation to a very large number of features.

In this work, we present an initial step toward addressing this gap. We train a SAE on the residual stream of the
Minerva-1B-base-v1.0 model, for which we release the weights; we leverage an automated interpretability pipeline based
on LLMs to evaluate both the quality of the latents, and provide explanations for some of them. We show that, albeit the

approach shows several limitations, we find some concepts in the weights of the model.
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1. Introduction

The rise of Large Language Models (LLMs) have pro-
foundly affected the landscape of Natural Language Pro-
cessing (NLP). These models have demonstrated remark-
able capabilities in many tasks, often achieving near-
human performances and saturating benchmarks as soon
as they are released. Nevertheless, many questions re-
main about their internal workings: Whether and how
they perform some form of reasoning [1], and to what
extent their grasp of concepts through natural language
approximates human conceptual understanding.

The aim of Mechanistic Interpretability (MechIn-
terp) is to address this pressing issue by attempting to
reverse-engineer the learned representations and algo-
rithms within their neural networks [2]. A promising
technique within MechlInterp is the use of sparse dictio-
nary learning methods like Sparse Autoencoders (SAEs)
[3]. The idea behind SAEs is similar to that of standard
autoencoder. Autoencoders are unsupervised models
that learn two functions: an encoding function, that
projects the input data from an n dimensional space into
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a k != n dimensional space; a decoding function, that
should reconstruct the k-dimensional data back into the
original n-dimensional one. Autoencoders are typically
used for dimensionality reduction, i.e., k << n. In the
case of SAEs, instead, k¥ >> n: the model is trained to
project the input space into a much higher-dimensional
(and thus sparser) one, and then project it back into the
original dimensional space. In our context, SAEs are
trained to reconstruct the internal activations of a lan-
guage model’s residual stream by projecting them into a
higher-dimensional latent space, while being constrained
to use only a small number of “features” from a learned
dictionary. This sparsity constraint encourages the SAE
to learn a set of monosemantic features, also referred to
as latents, that is, features each corresponding to a single,
hopefully more interpretable concept [4]. This is in con-
trast with a polysemantic representation, which is typical
of standard dense neural networks [5, 6], in which sev-
eral concepts are superimposed in the same activation
patterns. SAEs allow to decompose model activations
into a set of near-orthogonal, i.e., largely disentangled
features that should be semantically coherent.

Recent work has demonstrated the effectiveness of
SAEs in uncovering meaningful features within both toy
models [7] and large-scale commercial LMs, revealing
representations for concepts ranging from concrete ob-
jects to abstract ideas [8, 9, 10]. As noted in [9], several
distinctive features have been identified in Claude-3.5-
Sonnet — most notably, one corresponding to the “Golden
Gate Bridge” SAEs have also been applied successfully
to smaller, English-centric models in the 1 to 10 Billion
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parameter range [11]. This class of models is becom-
ing more and more relevant, as research on Small Lan-
guage Models (SLMs) [12] and Baby Language Models
(BabyLMs) [13, 14], that mitigate the costs of training and
serving LLMs while attempting to retain most of their
abilities, is a very active endeavour particularly in the
open-source/open-weights community.

Two key limitations remain for the applicability of
SAE:s to achieve interpretability. First, the computational
cost of training a SAE. Given their nature, the internal
layer of a SAE has to be a number of times larger than
the size of residual stream, and thus the context window,
of the target LM. The number of parameters of a SAE
scales with a factor of the context size of the model, mul-
tiplied by the number of hookpoints in the models where
activations are collected (e.g., after every transformer
block/layer). Thus, the larger the target LM, the bigger
and the more computationally expensive the SAE.

Second, and most importantly, SAEs output a large
number of features, that have then to be interpreted in
some way. While the literature has not reached a con-
sensus on what is the best practice, a popular method to
address this is to leverage another LLM to provide expla-
nations for the features based on examples of which to-
kens (and respective contexts) they fired on. For example,
if the feature f; fired on 10 tokens, the explainer model
is fed with these tokens, their contexts and the request
to find a common property among them. In most works,
commercial LLMs with hundred of billions of parameters
are successfully used for this task [9, 10]. However, re-
searchers have also shown that smaller and cheaper LMs
can be leveraged effectively as well [15].

The vast majority of efforts regarding the use of SAEs
for interpretability has been done on English-centric
LMs[9, 10, 11]. In addition to this, several efforts have
been made in the direction of finding universal features
that apply across models and languages [16, 17]. How-
ever, models primarily trained on languages other than
English have received less attention.

In this work, we aim to provide an early evaluation
on the feasibility of using SAEs to interpret models
trained to be natively Italian. In the interest of main-
taining a limited computational cost, we chose to use
the Minerva-1B-base-v1.0 from the Minerva model
family [18]. We trained a SAE on the residual stream of
every layer of the model using an Italian split of mC4
[19]. Then, we collected feature activations for the Italian
dump of Wikipedia [20], and attempt to explain them
and score explanations automatically using an LLM, fol-
lowing [15].

Our contributions are the following:

+ We train and release a Sparse Autoencoder
on Minerva-1B-base-v1.0. We make the

Autoencoder weights available to the research
community via HuggingFace."

+ We collect feature activations from a rela-
tively large collection of Italian data, and pro-
vide a quantitative and qualitative evalu-
ation on the explanations using an auto-
interpretability pipeline. We show that SAE
are promising for finding concepts in Italian
SLMs, but auto-interpretability pipelines shows
several limitations for Italian.

+ We report on the challenges and lessons
learned on training and using SAEs, especially
in computationally constrained settings.

This paper is organised as follows: In Section 2 we
detail the training procedure of the SAE; Section 3 pro-
vides an overview of the auto-interpretability pipeline we
employ; in Section 4 we present and discuss the obtained
results; finally, Section 5 draws some conclusions and
highlights future works.

2. SAE Training

In the following, we detail the data and procedure used
to train the SAE on the Minerva-1B-base-v1.0 SLM.

We trained the SAE on the residual stream of the model,
with hookpoints on the outputs of each attention block.
For our experiments we used the Sparsify library from
EleutherAl’ which is built to roughly follow the train-
ing recipe presented in [10] for a GPT-4 SAE. It trains
a k-Sparse Autoencoder [21]. The autoencoder uses a
TopK activation function that allows for direct control
over the number of active latents. Specifically, it only
keeps the k largest latents and assign zero to the rest.
Authors in [10] argue that this eliminates the need for
the L1 penalty, which biases activations toward zero and
is only a rough proxy for L0, and supports any activa-
tion function. They also show that it outperforms ReLU
autoencoders in sparsity-reconstruction tradeoffs and en-
hances monosemanticity as small activations are clamped
to zero.

Recipe. A full breakdown of the most relevant param-
eters selected for training is presented in Table 1. The
parameters were chosen following recipes for similar
sized models, e.g. [11]. The expansion factor controls
the size of the hidden layer, and is a multiplier over the
model context size. In our case, an expansion factor of
32 yields a hidden layer of size 2,048 x 32 = 65, 536
parameters.

!https://huggingface.co/alessandrobondielli/sae-Minerva- 1B-32x
The model can be used with the Sparsify and Delphi libraries for
interpretabilty.

*https://github.com/EleutherAl/sparsify
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Parameter Value

Activation TopK

Expansion Factor 32

k 32

Multi TopK False

Transcode False

Batch Size 16

Loss Function Fraction of Variance Unexplained (FVU)
Optimizer Signum

Table 1

Parameters for the SAE training.

Data. As for the training data, we chose to use mC4
[22]. Specifically, we consider the “tiny” split of the
clean_mc4_it dataset [19]. It includes 6 Billion tokens
(4 Billion words). The choice of the dataset was made
on the basis that it is relatively large, especially for the
Italian language, and it includes a variety of different
texts. The data was not included in the training set for
Minerva-1B-base-v1.0. We chose to use 6 Billion
tokens following recent literature on training SAEs for
similar-sized models [11].

Setup. We trained our model on a single Nvidia A100
with 80 GB VRAM. A full training run required 200 GPU
hours, which roughly equates to 8 days. The final model,
that we call sae-Minerva-1B-32x, occupies around
40 GB of disk space including hookpoints to all layers.
The final model is available on HuggingFace® and can be
loaded and used with Sparsify.

3. Auto-Interpretation of Features

For finding and explaining latents of the SAE models, we
use the auto interpretability pipeline proposed in [15]. It
is implemented via the Delphi library from EleutherAL*
The library includes tools for generating and scoring text
explanations for SAE.

The auto intepretability pipeline has three main steps:

1. Activations are collected from a text dataset.

2. An Explainer LLM is shown activating contexts
and is asked to provide interpretations in natural
language for them.

3. A Scorer LLM is tasked to distinguish between
activating and non activating contexts of a fea-
ture, as a binary classifier. This is achieved by
asking the model, given several sequences and
an intepretation, whether each of the sequences
activates the SAE latent with that interpretation.

Shttps://huggingface.co/alessandrobondielli/sae-Minerva- 1B-32x
*https://github.com/EleutherAl/delphi

In the following we detail our implementation of the
pipeline.

Collecting Activations. As for the text dataset, we
chose to use 20 Million tokens from the Italian subset
of the November 2023 Wikipedia dump [20] available
on HuggingFace.” The choice of Wikipedia as our test
dataset rather than a sample of the SAE training data
(clean_mc4_it) was made with the purpose of increas-
ing the probability of finding concepts specific to the
Ttalian language and culture, that could have been left
out from a relatively small sample of a web-based dataset.
We created equal-sized batches from the texts, shuffled
them, and then collected their token-level activations.
We collected the activations at three hookpoints, namely
at layers 2, 8 and 14. We did so with the aim of under-
standing whether there is any difference in the features
found near the beginning, middle, or near the end of the
residual stream. In the following we use the hookpoint
notation to refer to layers, namely Layer. z.

Generating Explanations. As for the explanation
generation step, we followed the same procedure as [15].
We showed the Explainer LLM 40 examples of the activat-
ing tokens and their contexts. We used a context length
of 32 tokens. The activating token can be in any of the 32
positions, but is highlighted as "« token »". We show
an example of explanation generation in Figure 1.

To limit the computational cost, we attempted to gen-
erate explanations only for a sample of 2,000 latents se-
lected from the pool of 65k. Latents with less than 40
examples were skipped. We used the number of latents
with enough examples at each hookpoint in the residual
stream to highlight their differences.

The chosen model to generate explanations is
Meta-Llama-3.1-8B-TInstruct-AWQ-INT4,’ a quan-
tized version of Meta-Llama-3.1-8B-Instruct [23].
We prompted the model both in English and Italian. For
the English prompt, we used the one provided in [15]
for the zero-shot experiment. The Italian version is a
direct translation of the English prompt. The translation
was made semi-automatically: first, the prompts were
translated with Gemini-2.5 Pro.” Then, the translated
prompt was manually revised to ensure its quality.’

Scoring Explanations. Finally, we scored the explana-
tions. We employed a binary classification method. For
each explanation, the model was shown five examples
of sentences, where each had equal probability of being
associated with the latent. The model was then asked

Shttps://huggingface.co/datasets/wikimedia/wikipedia

®https://huggingface.co/hugging-quants/Meta-Llama-3.
1-8B-Instruct-AWQ-INT4

"https://gemini.google.com, accessed in June 2025.

8See Appendix A for the prompts in both languages.
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EXAMPLES

Esempio 1: mentre i fri ul ani di Guid olin ricon fer m << ano == guanto
mostrato nell * ottima stogione precedente . Del ud ono invece le alter pret
end enti : se la

Ezempic Z: en ). Questo gruppo era un gruppo molto prestigioso di po eti
gioppon esi , oppositomente selezionati da Fu ji w ara ne K int & per
<< mostrare =»> la loro abilitd po

Esempio 3: udito do mozioni occidentoli come gli Stoti Uniti d ° America ,
la Francia e il Regno Unito ). Most << ré s> all * Occ idente che i so wi
etici erano in

Esempio 4: con il suo ross etto , inoltre ha << dimostrate »» di sapere
usare bene il caccia v ite son ico , proprio come il D otto re .

Esempio 5: Al pari della possibilita di << mostrare == il propric onore e
di risc att arsi . Ma la princip esso si od ir & per il suo

Esempio 6: La serie anim ata Arc ane , <= rivela »> che Ca it 1yn @ la

Explainer Model
Meta-Llama-3.1-BB-Instruct-AWQ-INT4

.

[SPIEGAZIONE]: Utilizzo di verbi che indiceno la dimostrazione
di qualcosa, come "mostra”, "dimostra”, "evidenzia", "copisce”

Figure 1: Explanation Generation with examples. Activating
tokens are marked as « token ». In the Figure we highlight
them also in bold red.

to decide, for each example, whether it corresponded to
the explanation, and output a list of of decisions. If the
output did not match a list of decision, it was assigned
None. The output was then compared with the ground
truth provided by the activations. The model for scoring
was the same one used to generate explanations. As for
the prompt and its translation in Italian, we followed
the same translation procedure as well. We evaluated
the quality of explanations with accuracy. Specifically,
we considered a per-sample accuracy (i.e., how many
out of the five examples the scorer model got right) and
the average accuracy across across latents for the same
hookpoint.

We acknowledge that our choice of using a multilin-
gual, relatively small, and quantized LLMs for generating
and scoring explanations is far from ideal, and it is not
an adequate substitute neither for human evaluation nor
for more performing LLMs. The choice of a multilingual
model rather than an Italian-only one was made due to
the current lack of such models with open weights, high
performances and capability to follow instructions. This
choice led also to prompting the model both in English
and Italian; this was done to assess its explanation/scor-
ing capabilities both in its “native” language, albeit on
data from another language, and on Italian, in order to
limit potential biases in the interpretation of results from
using only one or the other language. As for the choice
of a medium-sized quantized model, this was made in

the interest of limiting the computational costs of our
experiments, i.e., both in terms of the memory footprint
of the model, and of the overall GPU hours. Using larger
(including non-quantized variants) models would have
drastically increased both the need of resources and over-
all time of the experiments. Nonetheless, we argue that
our choice represents a lower-cost alternative to using
much larger and costlier models, that could prove es-
pecially useful to provide some early insights into the
quality of the latents found by the SAE, and of the model
being interpreted.

Authors in [15] estimate a cost in the order of hun-
dreds or thousand of dollars for explaining and scoring
100k latents with larger or commercial models; our exper-
iments, in contrast, can be easily replicated on a single
GPU. In our case, generating and scoring explanations
for 2,000 latents at three different hookpoints, in two
different languages, took 0.5 GPU hours each on a single
Nvidia A100, for a grand total of 3 GPU hours. Given
the size of the model used, the experiments could be also
replicated on much less performing hardware as well,
provided a trade-off on GPU hours.

4. Results and Discussion

In the following, we present our results. First, we show
a quantitative evaluation of the extracted latents, and
the performances of the generation and scoring pipeline,
both with Italian and English prompts. To explore the
results in greater depth, we also perform a qualitative
evaluation. We consider explanations that received high-
est scores by the scorer model. We use the results to
discuss the feasibility of the proposed approach on Ital-
ian SLM, as well as potential shortcomings.

4.1. Quantitative Evaluation

The core of our quantitative analysis is based on the
results we obtained using the Delphi library, with the
configuration presented in Section 3.

Quality of the Latents. To evaluate the quality of the
latents obtained via the SAE encoding, several metrics
can be used. Recall that we collected latent activations us-
ing 20 Million tokens from the Italian subset of Wikipedia.
Note also that here we are not yet using prompts, so we
do not distinguish between Italian and English.

Table 2 provide several common metrics used to evalu-
ate the quality of the extracted latents at each hookpoint.
First, we look at fraction of alive latents. A latent is con-
sidered alive if at least one input token in the dataset
made it fire. With the exception of Layer.8, the other
two have much smaller fractions of alive latents than it
is typical for SAEs (see for examples results reported in
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Figure 2: Accuracy distribution with Italian prompts.

Metric Layer.2 Layer.8 Layer.14
Fraction of latents alive (%) 72.02 95.16 84.65
Latents fired >1% of the time (%) 0.27 0.45 0.38
Latents fired >10% of the time (%) 0.06 0.00 0.01
Weak single-token latents (%) 9.93 2.20 2.77
Strong single-token latents (%) 12.40 0.55 0.47

Table 2
Latent activity statistics across selected layers

[10] and [11]). This may be the results of several factors.
On the SAE side, we could hypothesize an overcomplete
latent space for the evaluation data, i.e. a too broad latent
space for encoding the evaluation data. Recall in fact
that we used mC4 to train the SAE, and evaluated it on
Wikipedia, which may present less variety in terms of
texts.

On the Language Model side, we could hypothesize
that the latent space of the analyzed model is very
anisotropic at both earliest and latest layers, while more
isotropic near the middle of the stack. This however is
in direct contrast with works such as [24], and thus re-
quires a more in-depth analysis, that we leave to future
works. Another interesting aspect to consider are weak
and strong single-token latents, that is latents that fire on
a specific token only. Weak ones are those for which the
token in question makes many other latents fire; strong
ones are cases where the token preferentially activates
the specific latent. We observe that Layer. 2 is heavily
biased towards single token latents. This may indicate
that earliest layers sill leverage the embedding represen-
tation quite strongly. Finally, we see that latents that
fired either more than one or 10% of the times are less
and less as we move towards the residual stream. These
latents may be used to store single-token concepts of
words such as function ones.

Quality of the Explanations. To evaluate the quality
of explanations, we consider the results of the explana-
tion generation and scoring pipeline. Specifically, for
each latent, we compute the accuracy at distinguishing

English LLM Scorer Accuracy at each Hookpoint
|
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Layer 2
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1 Layer 8
i

0o 4 0
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Figure 3: Accuracy distribution with English prompts.

between sequences that activate and do not activate the
latent. Figures 2 and 3 show respectively the distribution
of Accuracy for the scorer model using Italian and En-
glish prompts for each hookpoint in the residual stream.

We observe that, in both cases, there are significant
differences both in distribution and averages for the three
hookpoints. We also observe that explanations for latents
extracted from later layers seem to be easier to score cor-
rectly for the scorer model. This may indicate that con-
cepts identified in later layers are, on average, more
easily interpretable by an LLM. The accuracy scores
obtained using the Italian prompt are generally higher
than those for the English one, with average scores rang-
ing from 0.64 to 0.69; the English ones, in contrast, range
from 0.55 to 0.62. However, these results in isolation can-
not be taken as a direct indication that explanations in
Italian are better than English ones. It may as well be the
result of poorer and broader explanations provided by
the Explainer model.

We also plot the aggregate confusion matrices over all
the predictions of both prompts. The confusion matrices
are shown in Figure 4. While the model prompted in
Italian seem to fare better in all metrics except for True
Positives, we also see that the number of times the model
was not able to follow instructions and provide a predic-
tion with the Italian prompt is three times higher than
with the English one. This may be further indication that
the Explainer/Scorer model used struggles with Italian.

4.2. Qualitative Evaluation

To dig deeper into the quality of the explanations, we di-
rectly looked at them and provide examples of seemingly
good and bad explanations. Specifically, we sampleed
from the 50 explanations that received highest scores by
the Scorer, both in English and Italian.

As for the Italian explanations, we immediately ob-
served that a large fractions of them suffer from Degen-
erate Repetition [25]: The model starts to generate the
same token or sequence of tokens over and over. On
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Figure 4: Confusion Matrices for the Scorer model on both
the Italian and English prompt.

the contrary, English ones does not suffer from this is-
sue. However, if we look at the quality of explanations,
aside from repetitions, we observe that at least some of
the Italian ones are quite relevant to the examples, and
while sometimes slightly missing the mark, they high-
light some interesting aspects of the tokens that fire the
latent.

Among these, we can clearly see that Layer.2 is
mostly represented by single token latents: the token
“ale” as part of “federale” (federal), in several contexts, or
the token “letto”, as both a noun (bed) and a verb (read).
Layer. 14 latents on the other had appear to represent
more abstract concepts. For example, we see latents firing
on the final number of a year date, and a very interesting
latent firing on the concept of competition (see Fig. ??).
Layer. 8 explanations are generally more confusing and
less interesting. Examples are reported in Figure 5 with
the relative explanation, cut to avoid showing repetitions.

As for the English explanations on the other hand, we
observed that most of them actually miss the mark. In
fact, they often provide an explanation related to the con-
texts, rather than the firing tokens. This may be due to

the fact that, while it is specified in the prompt, we use
Ttalian texts as examples but instructions and expected
outputs are in English. Neverhteless, we observe an inter-
esting trend: most explanations, at all layers, that actually
focus on the firing tokens refer to functional aspects of
the text, including punctuation marks, special charac-
ters, and functional words. For example, Latent 1818 of
Layer. 14 is explained as “Prepositions and conjunctions
used to connect words or phrases in Italian text, such
as "a", "di", "nel", "in", "su", "da", "al", "nei", "all", "sulle",
"col" [...]”. This is in contrast with what we observed for
Italian explanations.

4.3. Discussion of Key Findings

In the following, we highlight some of the key aspects
that emerged from the experiments.

SAEs can find partially interpretable features in
Italian Small Language Models. First, we observe
that using a SAE we are able to extract features that
somewhat align to interpretable concepts, despite some
limitations that we can mostly attribute to the quality of
the training data, both for the original model and the SAE,
and to the limitations of the auto-interpretability pipeline
(see below). It is possible that leveraging a dataset more
attuned with the Italian culture would yield better results
in finding relevant latents.

Different behaviours in the residual stream. We
observed some relevant differences in the quality and
types of latents that are properly identified in various
points of the residual stream. In general, we observed
that latents obtained from earlier in the stream are more
relevant to single tokens and grammatical aspects of the
language, while latents in later points of the stream show
a slight tendency towards more abstract conceptualiza-
tions.

Auto-interpretability is promising, but currently
shows limitations for Italian. Auto-interpretability
pipelines are definitely a promising approach for simpli-
fying and reducing the costs of finding explanations for
latents of SAEs. Our experiment suggest in fact that this
is a low-cost alternative that is nonetheless able to de-
liver some interesting results. Nevertheless, we observed
two main limitations that we can argue are actually two
sides of the same coin. On the one side, the Explainer
model showed some limitations in understanding the task
and providing coherent texts for the explanations, while
the Scorer model performed quite poorly in the binary
classificationt task. This is especially true in the case of
language mixing, i.e. when the model is prompted in its
“main” language, i.e. English, but has to work on another
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Mumeri che rappresentano date, anni, numeri di
episodi, numeri di telefono, numer di

identificaziona, [...] "capisce” [...]

Figure 5: Examples of explanations for latents in Italian.

language, in this case Italian. On the other side, the size
of the model used in our experiments could severely limit
its performances.

Thus, both issues could be solved either by leveraging
a stronger Italian-centric model as the Explainer/Score, or
by using a generally larger and better performing model.
However, as for the first solution, there are currently no
models on par with English ones in the 7-15B parameters
range, wich whould allow for reducing the cost. As for
the second solution, this would dramatically increase the
costs, both computational and monetary.

5. Conclusions and Future Works

In this paper, we have shown that SAEs can partly un-
cover interpretable concepts in Italian Small Language
Models. Specifically, we did so by training a SAE model
on the residual stream of the Minerva-1B-base-v1.0
SLM, and then applying an auto-interpretability pipeline
to generate explanations for its latents.

Our findings suggest that SAE can be used to this end,
and that it exist a hierarchical representation within the
model, with earlier layers showing more token-centric
features and later layers more abstract concepts. As for
the auto-interpretability pipeline, while promising for
its low cost, underscored the need for better language-
specific tools for Italian.

Moving forward, we aim to explore several avenues.

Utilizzo di verbi che indicano la dimostrazione di
qualcosa, come "mostra”, "dimostra”, "evidenzia",

Token che rappresentano concetti astratti come
competizioni, stagloni, partite, lomel, battaglie,
sfida [...]

First, we plan to scale our experiments in two directions:
on the one hand, we aim to train SAEs on larger Italian
models, e.g. larger variants of Minerva as well as others;
on the other hand, we observe that we need to improve
the models used for auto-interpretability, in order ob-
tain more reliable explanations. This could be achieved
both by scaling them up substantially, and by tuning
Italian-speaking models to the specific tasks of latent ex-
planation and scoring. Second, we plan to leverage SAE
and auto interpretability to address potential differences
of representations in models pre-trained specifically on
Italian data, e.g. Minerva and Velvet [26], and multilin-
gual models that received only fine-tuning in Italian, like
the LLaMAntino variants [27] and Cerbero [28]. Finally,
we plan to explore the larger latent space to attempt to
uncover features linked specifically to Italian-centric con-
cepts, in addition to properties of the Italian Language.

This work is an early first step in exploring inter-
pretability research using Sparse Autoencoders for non-
English-centric Language Models. Albeit limited in scope,
we are optimistic that it may provide a relevant founda-
tion for this yet under explored research area, both in
terms of approach and the release of open models for the
community.



Limitations

Our initial effort to interpret Italian SLMs using Sparse
Autoencoders has several limitations. The choice of
the smaller Minerva-1B-base-v1.0 model, driven by
computational constraints, means our findings might not
generalize to larger Italian models. The SAE’s training
data, while substantial for Italian, might not fully capture
all linguistic nuances, potentially affecting the quality
of learned features. Additionally, using different data to
train and evaluate the SAE, while arguably not problem-
atic in principle, may have introduced some unwanted
biases.

A key limitation stems from our cost-effective auto-
interpretability pipeline, which relies on a relatively
small, quantized multilingual LLM. This model strug-
gled with generating coherent Italian explanations, often
repeating itself, and performed poorly in scoring when
mixing languages. This highlights the strong dependence
of explanation quality on the explainer/scorer model’s
capabilities, and the current lack of robust, affordable,
Italian-specific tools.

Finally, our analysis was based on a sample of 2000
latents across only three layers, not the entire SAE latent
space. While insightful, this limited scope and subjec-
tive qualitative assessment means we cannot yet claim
a comprehensive understanding of the model’s internal
workings.
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Explainer Prompt (Eng)

You are a meticulous Al researcher
conducting an important
investigation into patterns found
in the Italian language. Your
task is to analyze text and
provide an explanation that
thoroughly encapsulates possible
patterns found in it.

Guidelines:

You will be given a list of text
examples in ltalian on which
special words are selected and
between delimiters like <<this>>.
If a sequence of consecutive
tokens all are important, the
entire sequence of tokens will be
contained between delimiters <<
just like this>>. How important
each token is for the behavior is
listed after each example in
parentheses.

- Try to produce a concise final
description. Simply describe the
text latents that are common in
the examples, and what patterns
you found.

If the examples are uninformative,
you don’t need to mention them.
Don’t focus on giving examples of
important tokens, but try to
summarize the patterns found in
the examples.

- Do not mention the marker tokens
(<< >>) in your explanation.

Do not make lists of possible
explanations. Keep your
explanations short and concise.

The last line of your response must
be the formatted explanation ,
using [EXPLANATION ]:

{{ prompt }}

Explainer Prompt (lta)

Sei un meticoloso ricercatore di
intelligenza artificiale che
conduce un’importante indagine
sugli schemi presenti nella

lingua italiana. Il tuo compito e

analizzare il testo e fornire
una spiegazione che racchiuda in
modo esauriente i possibili

schemi in esso riscontrati.

Linee guida:

Ti verra’ fornito un elenco di esempi
di testo in italiano in cui
parole speciali sono selezionate
e inserite tra delimitatori come
<<questo>>. Se una sequenza di
token consecutivi e’ tutta
importante, |’intera sequenza di
token sara’ contenuta tra
delimitatori <<proprio come
questo>>. L’importanza di ciascun

token per il comportamento e’
elencata dopo ogni esempio tra
parentesi.

- Cerca di produrre una descrizione
finale concisa. Descrivi
semplicemente gli elementi
latenti del testo comuni negli
esempi e gli schemi che hai
trovato.

- Se gli esempi non sono informativi,
non e’ necessario menzionarli.
Non concentrarti sul fornire
esempi di token importanti, ma
cerca di riassumere gli schemi
trovati negli esempi.

- Non menzionare i token marcatori

(<< >>) nella tua spiegazione.

- Non creare elenchi di possibili

spiegazioni. Mantieni le tue
spiegazioni brevi e concise.

- L’ultima riga della tua risposta

deve essere la spiegazione
formattata, usando [SPIEGAZIONE]:

{{ prompt }}

Figure 6: Explainer prompts in English (original, from [15]), and Italian (translated).

A. Explainer Prompts

In Figure 6 we provide prompts fed to the Explainer
model, both in English (original from [15]) and Italian

(translation).
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