
MakeItSample: a Python Library for Generating Typological
Language Samples Based on the Diversity Value Metric
Luca Brigada Villa

Dipartimento di Studi Umanistici, Università di Pavia, Piazza del Lino, 2 - 27100 - Pavia, Italy

Abstract
This paper presents makeitsample, a Python library for generating typological language samples based on the diversity
value (DV) metric. The library handles the construction of hierarchical language family trees from a list of CSV, the calculation
of diversity values for each node in the trees, and the selection of languages based on their weight within the tree. The library
aims to ease the process of creating typological language samples by providing an automated, scalable, and reproducible
solution.

Keywords
typology, sampling, diversity value, language family tree, typological databases

1. Introduction
Linguistic typology is the study of structural patterns
and variation across the world’s languages [1, 2]. Since
there are over 7,000 known languages [3], full coverage
of linguistic diversity in typological studies is unfeasible.
Instead, researchers rely on language samples — subsets
of languages selected to represent the world’s linguistic
diversity as accurately as possible [4, 5]. However, the
way these samples are constructed greatly impacts the
validity of typological generalizations, as biased sampling
can distort conclusions about universal tendencies and
linguistic variation [6].

Several sampling strategies have been developed to im-
prove representativeness in typological studies. Random
sampling is a straightforward method, but it risks includ-
ing many closely related languages, reducing genealogi-
cal and areal diversity [5, 7]. Stratified sampling mitigates
this issue by ensuring balanced representation across lan-
guage families and geographic regions [8], yet defining
appropriate strata remains a challenge. For instance, ge-
nealogical classification varies between databases such
as Glottolog [3] and Ethnologue [9], leading to inconsis-
tencies in sampling.

Another approach is diversity-based sampling, which
prioritizes structurally diverse languages rather than sim-
ply ensuring equal representation across language fami-
lies or regions [6]. This method focuses on maximizing
linguistic variation within a sample, making it particu-
larly useful for detecting cross-linguistic patterns [10].
While promising, current implementations of diversity-
based sampling often lack computational automation and
clear reproducibility, limiting their practical application.

CLiC-it 2025: Eleventh Italian Conference on Computational Linguis-
tics, September 24 — 26, 2025, Cagliari, Italy
$ luca.brigadavilla@unipv.it (L. Brigada Villa)
� 0009-0003-3523-7622 (L. Brigada Villa)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

Despite efforts to refine sampling methods, typological
research remains susceptible to several biases [11]:

• Bibliographic bias: since typological studies rely
on existing descriptions, well-documented lan-
guages are favored over lesser-described or en-
dangered languages [12]. In addition to this, the
quality of the descriptions may affect the results
of the typological analysis, as some grammars
may have been written with a specific theoret-
ical framework in mind, or been written in the
past and not updated to reflect current linguistic
theories.

• Genetic bias: samples may be unbalanced due to
the overrepresentation of some language fami-
lies, leading to an underestimation of linguistic
diversity [4, 7].

• Areal bias: some geographic regions (e.g., Europe)
are disproportionately represented in typological
databases compared to highly diverse but under-
documented areas such as New Guinea and the
Amazon [13, 14].

• Typological bias: this bias occurs when a sam-
ple contains a disproportionate number of lan-
guages with similar typological features, leading
to overgeneralizations about linguistic universals
[6]. For example, if a sample contains a large num-
ber of SVO languages, it may lead researchers to
conclude that SVO is the most common word or-
der across languages or that a feature associated
with this order (e.g. adjective-noun order) is the
most common across languages, even if this is
not the case. This bias can also occur when re-
searchers focus on a specific typological feature
(e.g., case marking) and select languages that ex-
hibit that feature.

• Cultural bias: this bias occurs when language
samples underrepresent the world’s cultural and

mailto:luca.brigadavilla@unipv.it
https://orcid.org/0009-0003-3523-7622
https://creativecommons.org/licenses/by/4.0


linguistic diversity. It relates to the idea of linguis-
tic relativity—the notion that language can influ-
ence how people think and perceive the world
[15, 16]. While early theories assumed a strong,
deterministic link, more recent research treats
the connection between language and thought
as testable. For instance, Lucy [17] showed that
speakers of languages with obligatory number
marking perceive and categorize objects differ-
ently than speakers of classifier languages, illus-
trating how grammatical structures can reflect
cultural patterns.

These biases can skew typological conclusions, rein-
forcing the need for an automated sampling pipeline that
accounts for linguistic diversity in a principled manner.

To address one of these biases, this paper presents
a Python library to ease the process of generating
typological language samples. The library, called
makeitsample1, is designed to automate the sampling
process and provide a principled and scalable solution
to generating language samples for typological studies.
The library implements a sampling method based on the
diversity value (DV) metric [18, 19, 11] and comes with
a command-line interface. The library is designed to:

• Construct a set of hierarchical language family
trees from a set of CSV files.

• Compute diversity values (DVs) for each language
family and subgroup, ensuring that more struc-
turally diverse families contribute proportionally
to the final sample.

• Select languages based on the weights of the
groups and families they belong, propagating
the selection algorithm from higher-level fami-
lies down to subgroups, ensuring a genealogically
and typologically balanced sample.

By integrating computational methods with linguistic
typology, this library provides an automated, scalable,
and genealogical bias-aware solution to sampling. The
paper is structured as follows: Section 2 describes the
methodology behind the DV metric and the sampling
algorithm. Section 3 details the implementation of the
package, describing the libraries it relies on and the mod-
ules of the library. Finally, Section 4 discusses the poten-
tial applications of makeitsample and concludes the
paper.

1Available at https://pypi.org/project/makeitsample/.
makeitsample is open source and licensed under the
MIT license. The source code is available at https:
//github.com/unipv-larl/makeitsample.

2. Methodology
In this section, I describe the methodology behind the
diversity value (DV) metric and the sampling algorithm.
I first introduce the family tree representation used to
model genetic relationships between languages (Section
2.1). Then, I explain how DVs are calculated for each lan-
guage family and subgroup (Section 2.2). Finally, I detail
the sampling algorithm that selects languages based on
their weight within the tree (Section 2.3).

2.1. The Family Tree Representation
A family tree is a hierarchical structure that represents
the genetic relationships between languages. Each node
in the tree corresponds to a language family or sub-
group, while edges indicate parent-child relationships.
The hierarchical structure allows us to visualize the ge-
nealogical relationships between languages, with higher-
level nodes representing broader families and lower-level
nodes representing more specific subgroups or individual
languages. This way of representing language families
traces back to Schleicher’s works [20, 21], where he pro-
posed a tree-like structure to illustrate the relationships
between languages. This representation has been widely
adopted in historical linguistics and typology, as it pro-
vides a clear and intuitive way to visualize the genetic
relationships between languages. The idea behind the
family tree is to represent the evolution of languages
over time, with branches representing the divergence of
languages from their common ancestors. Each language
family can be thought of as a trunk, with subgroups and
individual languages branching out from it. The length of
the branches can be interpreted as a measure of the time
since the languages diverged from their common ances-
tor, with longer branches indicating greater divergence.
The tree is rooted at the top-level family, with subgroups
branching out from their respective parent nodes. This
representation allows us to model the genealogical rela-
tionships between languages and determine their relative
weights within the tree.

As an example, consider the Indo-European language
family, which, according to Ethnologue [9], is divided
into eight subgroups: Albanian, Armenian, Baltic, Celtic,
Germanic, Greek, Indo-Iranian, and Italic. These sub-
groups are further divided into smaller subgroups and
individual languages, forming a hierarchical structure
that captures the genetic relationships between Indo-
European languages as in Figure 1.

The family tree representation allows us to model the
genetic relationships between languages and see which
families and groups are more structurally diverse. This
information is crucial for calculating diversity values and
selecting languages for the final sample.

https://pypi.org/project/makeitsample/
https://opensource.org/license/mit
https://github.com/unipv-larl/makeitsample
https://github.com/unipv-larl/makeitsample


Indo-European

Albanian

Gheg

aln

Tosk

...

Armenian

hye hyw

Baltic

...

Celtic

...

Germanic

...

Greek

...

Indo-Iranian

...

Italic

...

Figure 1: Sample of the tree of the Indo-European family. This
representation does not take into account the temporal aspect
of the tree, i.e. the length of the branches is not proportional
to the time since the languages diverged from their common
ancestor.

2.2. Calculating the Diversity Value (DV)
The diversity value (DV) metric quantifies the structural
diversity of a language family or subgroup based on the
topological properties of its family tree. This metric was
first introduced by Rijkhoff and Bakker [18] and later
refined by Bakker [11] as a way to maximize the typolog-
ical diversity of languages in a sample. The calculation
involves the following steps:

1. Breadth-First Search (BFS): starting from a given
node for which we want to calculate the DV
(henceforth “root”), perform a BFS to determine
the level of each node in the tree. The level of a
node is the number of edges from the root to that
node.

2. Level Counts: calculate the number of nodes at
each level. This helps in understanding the dis-
tribution of nodes across different levels of the
tree.

3. Contributions Calculation: for each level, calcu-
late the contributions to the DV. The contribution
of a level is determined by the number of nodes
at that level and their distance from the starting
node. The contributions are accumulated as we
move from the root to the leaves of the tree. The
contribution 𝐶𝑖 of level 𝑖 can be calculated as:

𝐶𝑖 = 𝐶𝑖−1 + (𝑁𝑖 −𝑁𝑖−1)×
𝐿− (𝑖− 1)

𝐿

where 𝐶𝑖−1 is the contribution of the level up-
wards (setting to 0 the contribution of the root
level) 𝑁𝑖 is the number of nodes at level 𝑖, 𝑁𝑖−1

is the number of nodes at the level above, and 𝐿 is
the maximum number of levels in the forest. If we
are calculating the DV for the root of the family
tree, then 𝐿 is the maximum number of levels in
any tree in the forest. If we are calculating the DV
for a subgroup, then 𝐿 is the maximum number
of levels in the sibling trees of the tree rooted at
the subgroup (including the subgroup tree).

Sometimes, family trees are shaped like the left
side tree in Figure 2 in which a branch of the tree
stops at a certain level without reaching the bot-
tom of the tree (see the group 1 branch in Figure
2). If we apply the previous formula, we would
get a negative factor while calculating the con-
tribution of the bottom level, since 𝑁𝑖 would be
lower than 𝑁𝑖−1. To avoid this, we add a number
of pseudo-nodes to the tree (x nodes in Figure
2), so that the number of nodes at each level is
always greater than or equal to the number of
nodes at the level above. This is done by adding a
number of pseudo-nodes equal to the difference
between the number of nodes at the level above
and the number of nodes at the current level. The
pseudo-nodes are not included in the final sample,
but they are necessary to ensure that the contribu-
tions are calculated correctly. The pseudo-nodes
are added only to the levels that are not the last
level of the tree. This way, we can ensure that
the contributions are always positive and that the
DV is calculated correctly.

4. Mean of Contributions: the DV is the mean of the
contributions calculated in the previous step. This
average value represents the structural diversity
of the language family or subgroup. The DV can
be expressed as:

𝐷𝑉 =
1

𝐷

𝐷∑︁
𝑖=1

𝐶𝑖

where 𝐷 is the depth of the tree rooted at the
node for which we are calculating the DV, and
𝐶𝑖 is the contribution of level 𝑖.
For language isolates, the DV is set arbitrarily
to 1 (as suggested by Rijkhoff and Bakker [19]),
in order to avoid assigning a value of 0 to these
languages and to ensure that they get the chance
to be selected in the sampling algorithm.

By following these steps, we can compute the DV for
any node in the family tree (except for nodes representing
languages which are not structurally diverse in the tree).
The DV metric provides a principled way to quantify the
typological diversity of languages and guide the selection
process in the sampling algorithm.

As a matter of example, let us consider the example
forest in Figure 2 and let us suppose that we want to
calculate the DV of the family 1. The first step is to
define 𝐿, i.e. the maximum number of levels under the
root node in the forest. In this case, 𝐿 = 3. Then, we
proceed to calculate the contributions of each level. For
the first level, i.e. the one including group 1 and group 2,
we have 𝑁1 = 2 and 𝑁0 = 1. 𝐶0 is set to 0, so we have:

𝐶1 = 0 + (2− 1)× 3− (1− 1)

3
= 0 + (1× 1) = 1.



family 1

group 1

lang 1

x

lang 2

x

group 2

group 3

lang 3 lang 4

group 4

lang 5

family 2

group 5

lang 6 lang 7

group 6

lang 8

Figure 2: An example forest of language families.

For the second level, i.e. the one including lang 1, lang 2,
group 3 and group 4, we have 𝑁2 = 4 and 𝑁1 = 2, so:

𝐶2 = 1 + (4− 2)× 3− (2− 1)

3
= 1 + (2× 2

3
) =

7

3
.

For the third level, i.e. the one including the two pseudo-
nodes, lang 3, lang 4 and lang 5, we have 𝑁3 = 5 and
𝑁2 = 4, so:

𝐶3 =
7

3
+ (5− 4)× 3− (3− 1)

3
=

7

3
+ (1× 1

3
) =

8

3
.

Finally, we can calculate the DV as:

𝐷𝑉 =
1

3

(︂
1 +

7

3
+

8

3

)︂
=

1

3
× 6 = 2.

group 1

lang 1 lang 2

group 2

group 3

lang 3 lang 4

group 4

lang 5

Figure 3: The forest obtained considering the sibling trees of
group 1. The pseudo-nodes are not needed here since all the
leaves are at the same level.

This algorithm can be applied to any node in the fam-
ily tree. If we want to calculate the DV of a subgroup,
we can simply set 𝐿 to the maximum number of levels
in the sibling trees of the tree rooted at the subgroup
(including the subgroup tree). For example, if we want
to calculate the DV of group 1, we can set 𝐿 = 2 (since
the maximum number of levels in the sibling trees is 2).
Then, we can calculate the contributions as before, with-
out considering the pseudo-nodes. The full calculation of
the DV of this node and all the other nodes in the forest
is not shown here for the sake of brevity, but it can be
found in Appendix A.

2.3. The Sampling Algorithm
The sampling algorithm aims to select the most diverse
set of languages from the family trees, ensuring that the
final sample is representative of the world’s linguistic
diversity. Let us suppose that we need a sample of size 𝑁 .
If 𝑁 is higher than the total number of languages in the
family tree, we start by selecting at least a language from
each family. If there is still a number of languages to be
selected, we distribute this number among the families
according to their DVs. The distribution is randomic but
weighted by the DVs of the families. This ensures that
more structurally diverse families contribute proportion-
ally more to the final sample. If the sample size 𝑁 is
smaller than the total number of families, we select the
families randomly, but weighted by their DVs and select
a language from each selected family.

If the sample is not complete, we proceed selecting
other languages. At this stage, each selected family has at
least one language included in the sample. The remaining
languages are then allocated to the subgroups of each
family, continuing down to the individual language level.
This allocation is done randomly but weighted by the
diversity values of the nodes, as shown in Figure 4.

When each subgroup has been assigned a number of
languages, we select the languages randomly from the
subgroups.

3. Implementation
In this section, I describe the implementation of
makeitsample, outlining the dependencies it utilizes
(section 3.1), and the two modules of the library:
language_family_tree (Section 3.2) and forest
(Section 3.3). I also provide an overview of the command-
line interface (Section 3.4) and the structure of the input
data (Section 3.4.1).

3.1. Libraries
The modules rely mainly on two libraries: pandas [22,
23] for data manipulation and networkx [24] for graph
representation and algorithms. The pandas library is
used to read the input data and construct the family tree.
The networkx library is used to represent the family
tree as a graph and perform graph-based operations such
as BFS traversal and DV calculation.

3.2. The language_family_tree
Module

The language_family_treemodule is responsible for
constructing the family trees from the input data. It reads
the CSV files and creates a hierarchical structure repre-
senting the genetic relationships between languages. It



Figure 4: Illustration of the allocation to the subgroups. If we have to select 8 languages from this family tree (step 1), we
start by selecting 1 language from each branch and distribute the remaining 5 languages among the branches (step 2). If we
reach the bottom of the tree, we select the languages from the branch, otherwise we repeat the process (step 3).

Figure 5: Example of the tree structure before and after
adding a node. Circles represent subgroups and families, while
squares represent languages.

consists of a class called LanguageFamilyTree inher-
ited from the networkx.DiGraph class. This class rep-
resents the family tree as a directed graph, where each
node corresponds to a language family, subgroup or lan-
guage, and edges represent parent-child relationships.
The class provides methods for building the tree from a
CSV input (formatted as described in Section 3.4.1), for
exporting the tree to a JSON or CSV file, for converting it
to a dictionary, for calculating the diversity values of the
nodes and for selecting a certain number of languages
from the tree according to the sampling algorithm de-
scribed in Section 2.3.

When importing the data, a function of
LanguageFamilyTree refines the structure of
the tree in order to avoid structures that would make
impossible to be processed by the sampling algorithm.
This occurs when a subgroup contains both languages
and other subgroups as children. To address this, an
additional level is introduced in the tree to separate
the languages from the subgroups. This is achieved
by creating new nodes that become parents to each
language and children to the node that was previously
their parent, as shown in Figure 5. This ensures
the structure remains a tree, allowing the sampling
algorithm to function correctly.

3.3. The forestModule
The forest module is responsible for managing multi-
ple family trees and performing operations on them. It
consists of a class called Forest that inherits from the
list class. This class represents a collection of family
trees and provides methods for reading a set of CSV files
representing family trees from a directory, adding new
LanguageFamilyTree objects to the forest, exporting
the forest to a set of JSON or CSV files, calculating the
diversity values of the trees in the forest, and selecting
languages from the forest according to the sampling al-
gorithm.

3.4. Command-Line Interface
The command-line interface (CLI) of makeitsample is
designed to be user-friendly and allows users to easily
run the sampling pipeline from the command line. To
run the pipeline, users can use the following command:
makeitsample [-h] [-n N] [-i INPUT] [-o
OUTPUT] [-f {csv,json}] [-s SAMPLENAME] [-r
RANDOM_SEED]
where N is the sample size, INPUT is the input directory
containing the CSV files, OUTPUT is the output direc-
tory where the sample will be saved, f is the output
format (csv or json), SAMPLENAME is the name of the
sample file, and RANDOM_SEED is the random seed for
reproducibility.

3.4.1. Structure of the Input Data

In order to run makeitsample, the input data must be
in a CSV format (as in the example in Table 1 in Appendix
B). The CSV files (one for each language family) should
contain:

• id: a column for the unique identifier of the lan-
guage (e.g., ISO code), of the family or the group;

• name: a column storing the name of the language,
of the family or the group;



• parent_id: a column storing the id of the par-
ent node in the family;

• type: a column storing the type of the node (the
only allowed values for this column are family,
group or language).

The user can also add other columns with additional
information about the languages, families or groups.
makeitsample will ignore these columns when con-
structing the family tree, but they will be included in the
output file.

4. Conclusions
In this paper, I presented makeitsample, a Python pack-
age that aims to ease the generation of typological lan-
guage samples based on the diversity value (DV) metric.
I presented the modules of the library and the command-
line interface, which allow to construct a set of hierarchi-
cal language family trees, to calculate diversity values for
each node, and to select languages based on their weight
within the tree. By automating the sampling process and
accounting for linguistic diversity, the library and the
command-line interface provide a principled and scalable
solution to generating language samples for typological
studies helping researchers create more representative
samples and reduce genealogical biases in their analyses.

The library is designed to be flexible and extensible,
allowing researchers to adapt it to their specific needs
and incorporate additional sampling strategies or metrics.
Although user-friendly, the library is still in its early
stages and requires some knowledge of Python to be used
effectively or at least some familiarity with the command
line. This might be a limitation for some users, and the
plan is to create a web interface to make it more accessible
to a wider audience.

References
[1] B. Comrie, Language Universals and Linguistic Ty-

pology: Syntax and Morphology, University of
Chicago Press, Chicago, 1989.

[2] W. Croft, Typology and Universals, Cambridge Text-
books in Linguistics, 2 ed., Cambridge University
Press, Cambridge, 2002.

[3] H. Hammarström, R. Forkel, M. Haspelmath,
S. Bank, Glottolog 5.1, 2024. URL: http://glottolog.
org. doi:10.5281/zenodo.14006617.

[4] M. S. Dryer, Large linguistic areas and lan-
guage sampling, Studies in Language. In-
ternational Journal sponsored by the Founda-
tion “Foundations of Language” 13 (1989) 257–
292. URL: https://www.jbe-platform.com/content/

journals/10.1075/sl.13.2.03dry. doi:https://doi.
org/10.1075/sl.13.2.03dry.

[5] R. D. Perkins, Statistical techniques for determin-
ing language sample size, Studies in Language.
International Journal sponsored by the Founda-
tion “Foundations of Language” 13 (1989) 293–
315. URL: https://www.jbe-platform.com/content/
journals/10.1075/sl.13.2.04per. doi:https://doi.
org/10.1075/sl.13.2.04per.

[6] B. Bickel, Distributional typology: Statistical in-
quiries into the dynamics of linguistic diversity, in:
B. Heine, H. Narrog (Eds.), The Oxford Handbook
of Linguistic Analysis, 2nd ed., Oxford University
Press, Oxford, 2015, pp. 901–923.

[7] J. Nichols, Linguistic Diversity in Space and Time,
University of Chicago Press, Chicago, 1999.

[8] M. S. Dryer, The greenbergian word order correla-
tions, Language: Journal of the Linguistic Society
of America 68 (1992) 81–138.

[9] D. M. Eberhard, G. F. Simons, C. D. Fennig, Eth-
nologue: Languages of the World, 28th ed., SIL In-
ternational, Dallas, Texas, 2025. URL: http://www.
ethnologue.com.

[10] M. A. Cysouw, Quantitative methods in typology,
in: R. Köhler, G. Altmann, R. G. Piotrowski (Eds.),
Quantitative Linguistics: An International Hand-
book, De Gruyter, Berlin; New York, 2005, pp. 554–
578.

[11] D. Bakker, Language sampling, in: J. J. Song
(Ed.), The Oxford Handbook of Linguistic Ty-
pology, Oxford University Press, Oxford, UK,
2010, pp. 100–128. URL: https://doi.org/10.1093/
oxfordhb/9780199281251.013.0007. doi:10.1093/
oxfordhb/9780199281251.013.0007, online
edition published on Oxford Academic, 18 Sept.
2012.

[12] N. Evans, S. C. Levinson, The myth of
language universals: Language diversity and
its importance for cognitive science, Behav-
ioral and Brain Sciences 32 (2009) 429–448.
URL: https://doi.org/10.1017/S0140525X0999094X.
doi:10.1017/S0140525X0999094X.

[13] B. Bickel, Typology in the 21st century: Ma-
jor current developments, Linguistic Typol-
ogy 11 (2007) 239–251. URL: https://doi.org/
10.1515/LINGTY.2007.018. doi:10.1515/LINGTY.
2007.018.

[14] T. Güldemann, The Languages and Linguistics
of Africa, De Gruyter Mouton, Berlin; Boston,
2018. URL: https://doi.org/10.1515/9783110421668.
doi:10.1515/9783110421668.

[15] E. Sapir, Selected Writings in Language, Culture,
and Personality, University of California Press,
Berkeley, CA, 1949.

[16] B. L. Whorf, Language, Thought, and Reality: Se-

http://glottolog.org
http://glottolog.org
http://dx.doi.org/10.5281/zenodo.14006617
https://www.jbe-platform.com/content/journals/10.1075/sl.13.2.03dry
https://www.jbe-platform.com/content/journals/10.1075/sl.13.2.03dry
http://dx.doi.org/https://doi.org/10.1075/sl.13.2.03dry
http://dx.doi.org/https://doi.org/10.1075/sl.13.2.03dry
https://www.jbe-platform.com/content/journals/10.1075/sl.13.2.04per
https://www.jbe-platform.com/content/journals/10.1075/sl.13.2.04per
http://dx.doi.org/https://doi.org/10.1075/sl.13.2.04per
http://dx.doi.org/https://doi.org/10.1075/sl.13.2.04per
http://www.ethnologue.com
http://www.ethnologue.com
https://doi.org/10.1093/oxfordhb/9780199281251.013.0007
https://doi.org/10.1093/oxfordhb/9780199281251.013.0007
http://dx.doi.org/10.1093/oxfordhb/9780199281251.013.0007
http://dx.doi.org/10.1093/oxfordhb/9780199281251.013.0007
https://doi.org/10.1017/S0140525X0999094X
http://dx.doi.org/10.1017/S0140525X0999094X
https://doi.org/10.1515/LINGTY.2007.018
https://doi.org/10.1515/LINGTY.2007.018
http://dx.doi.org/10.1515/LINGTY.2007.018
http://dx.doi.org/10.1515/LINGTY.2007.018
https://doi.org/10.1515/9783110421668
http://dx.doi.org/10.1515/9783110421668


lected Writings of Benjamin Lee Whorf, MIT Press,
Cambridge, MA, 1956.

[17] J. A. Lucy, Grammatical Categories and Cogni-
tion: A Case Study of the Linguistic Relativity Hy-
pothesis, Cambridge University Press, 1992. URL:
https://doi.org/10.1017/CBO9780511620713. doi:10.
1017/CBO9780511620713.

[18] J. Rijkhoff, D. Bakker, K. Hengeveld, P. Kahrel, A
method of language sampling, Studies in Language
17 (1993) 169–203. doi:10.1075/sl.17.1.07rij.

[19] J. Rijkhoff, D. Bakker, Language sampling, Linguis-
tic Typology 2 (1998) 263–314.

[20] A. Schleicher, O jazyku litevském, zvláště na slo-
vanský [on the lithuanian language, and specifically
on slavic], Časopis Českého Museum [Journal of
the Czech Museum] 27 (1853) 320–324.

[21] A. Schleicher, Die ersten spaltungen des indoger-
manischen urvolkes [the first splits of the proto-
indo-european people], Allgemeine Monatsschrift
für Wissenschaft und Literatur [Monthly Journal
of Science and Literature] 3 (1853) 786–787.

[22] W. McKinney, Data Structures for Statistical Com-
puting in Python, in: Stéfan van der Walt, Jarrod
Millman (Eds.), Proceedings of the 9th Python in Sci-
ence Conference, 2010, pp. 56 – 61. doi:10.25080/
Majora-92bf1922-00a.

[23] The pandas development team, pandas-dev/pandas:
Pandas, 2020. URL: https://doi.org/10.5281/zenodo.
3509134. doi:10.5281/zenodo.3509134.

[24] A. A. Hagberg, D. A. Schult, P. J. Swart, Exploring
network structure, dynamics, and function using
networkx, in: G. Varoquaux, T. Vaught, J. Millman
(Eds.), Proceedings of the 7th Python in Science
Conference (SciPy2008), Pasadena, CA USA, 2008,
pp. 11–15.

A. Full Calculation of the DV for
the Example in Figure 2

tree 1
family 1

𝐷𝑉 = 2 (full calculation in Section 2.2)

group 1

𝐿 = 2 (maximum number of levels in the sibling trees of
the tree rooted at group 1)

Node count:

• 𝑁0 = 1 (number of nodes at level 0)
• 𝑁1 = 2 (number of nodes at level 1)

Calculating the contributions:

• 𝐶0 = 0 (contribution of the root level)
• 𝐶1 = 0+ (2− 1)× 2−(1−1)

2
= 0+ (1× 1) = 1

𝐷𝑉 = 1

group 2

𝐿 = 2 (sibling of group 1)
Node count:

• 𝑁0 = 1 (number of nodes at level 0)
• 𝑁1 = 2 (number of nodes at level 1)
• 𝑁2 = 3 (number of nodes at level 2)

Calculating the contributions:

• 𝐶0 = 0 (contribution of the root level)
• 𝐶1 = 0+ (2− 1)× 2−(1−1)

2
= 0+ (1× 1) = 1

• 𝐶2 = 1+(3−2)× 2−(2−1)
2

= 1+(1× 1
2
) = 3

2

𝐷𝑉 = 1
2

(︀
1 + 3

2

)︀
= 5

4
= 1.25

group 3

𝐿 = 1 (maximum number of levels in the sibling trees of
the tree rooted at group 3)

Node count:

• 𝑁0 = 1 (number of nodes at level 0)
• 𝑁1 = 2 (number of nodes at level 1)

Calculating the contributions:

• 𝐶0 = 0 (contribution of the root level)
• 𝐶1 = 0+ (2− 1)× 2−(1−1)

2
= 0+ (1× 1) = 1

𝐷𝑉 = 1

group 4

𝐿 = 1 (sibling of group 3)
Node count:

• 𝑁0 = 1 (number of nodes at level 0)
• 𝑁1 = 1 (number of nodes at level 1)

It behaves like a language isolate, so we set 𝐷𝑉 = 1.

tree 2
family 2

𝐿 = 3 (sibling of family 1)
Node count:

• 𝑁0 = 1 (number of nodes at level 0)
• 𝑁1 = 2 (number of nodes at level 1)
• 𝑁2 = 3 (number of nodes at level 2)

Calculating the contributions:

• 𝐶0 = 0 (contribution of the root level)
• 𝐶1 = 0+ (2− 1)× 3−(1−1)

3
= 0+ (1× 1) = 1

• 𝐶2 = 1+(3−2)× 3−(2−1)
3

= 1+(1× 1
3
) = 4

3

𝐷𝑉 = 1
2

(︀
1 + 4

3

)︀
= 1

2
× 7

3
= 7

6
= 1.167

https://doi.org/10.1017/CBO9780511620713
http://dx.doi.org/10.1017/CBO9780511620713
http://dx.doi.org/10.1017/CBO9780511620713
http://dx.doi.org/10.1075/sl.17.1.07rij
http://dx.doi.org/10.25080/Majora-92bf1922-00a
http://dx.doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134


group 5

𝐿 = 1 (maximum number of levels in the sibling trees of
the tree rooted at group 5)

Node count:

• 𝑁0 = 1 (number of nodes at level 0)
• 𝑁1 = 2 (number of nodes at level 1)

Calculating the contributions:

• 𝐶0 = 0 (contribution of the root level)
• 𝐶1 = 0+ (2− 1)× 1−(1−1)

1
= 0+ (1× 1) = 1

𝐷𝑉 = 1

group 6

𝐿 = 1 (sibling of group 5)
Node count:

• 𝑁0 = 1 (number of nodes at level 0)
• 𝑁1 = 1 (number of nodes at level 1)

It behaves like a language isolate, so we set 𝐷𝑉 = 1.

B. Example of input CSV file

id name parent_id place type
Afro-Asiatic Afro-Asiatic - - family

36 Berber Afro-Asiatic - group
1793 Awjila-Sokna 1063 - group
1063 Eastern 36 - group
1064 Siwa 1063 - group
37 Northern 36 - group

1704 Atlas 37 - group
gnc Guanche 36 Spain language
auj Awjilah 1793 Libya language
swn Sawknah 1793 Libya language
siz Siwi 1064 Egypt language
cnu Chenoua 37 Algeria language
jbe Judeo-Berber 1704 Israel language
shi Tachelhit 1704 Morocco language
tzm "Tamazight, Central Atlas" 1704 Morocco language
zgh "Tamazight, Standard Moroccan" 1704 Morocco language

Table 1
Sample taken from the Afro-Asiatic family tree on Ethnologue.


	1 Introduction
	2 Methodology
	2.1 The Family Tree Representation
	2.2 Calculating the Diversity Value (DV)
	2.3 The Sampling Algorithm

	3 Implementation
	3.1 Libraries
	3.2 The language_family_tree Module
	3.3 The forest Module
	3.4 Command-Line Interface
	3.4.1 Structure of the Input Data


	4 Conclusions
	A Full Calculation of the DV for the Example in Figure 2
	B Example of input CSV file

