
BES4RAG: A Framework for Embedding Model Selection in
Retrieval-Augmented Generation

Lorenzo Canale1,*,†, Stefano Scotta1,*,†, Alberto Messina1,* and Laura Farinetti2

1RAI - Centro Ricerche, Innovazione Tecnologica e Sperimentazione, Via Giovanni Carlo Cavalli 6, 10138, Turin, Italy
2Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy

Abstract
Embedding model selection is a crucial step in optimizing Retrieval-Augmented Generation (RAG) systems. In this paper, we
introduce BES4RAG, a framework designed to evaluate embedding models based on question-answering accuracy rather
than standard retrieval metrics. BES4RAG automates dataset processing, automatic question generation, passage indexing,
retrieval, and answer evaluation to determine the optimal embedding model for specific datasets. Experimental results on
three diverse datasets confirm that embedding choice significantly affects performance, varies across datasets, and can enable
smaller LLMs to outperform larger ones when paired with the right embeddings. Additionally, since a key component of this
framework is automatic question generation, we found that its performance closely aligns with manually crafted questions,
as evidenced by the Pearson correlation between the two.

Keywords
Embedding Model Selection, Automatic Question Generation, Evaluation Framework, Retrieval-Augmented Generation
(RAG),

1. Introduction
Retrieval-Augmented Generation (RAG) has emerged
as a powerful approach for improving the factual accu-
racy and contextual relevance of Large Language Models
(LLMs) by incorporating external knowledge sources [1].
A crucial component of a RAG system is the embedding
model, which converts textual data into vector represen-
tations for retrieval [2, 3, 4, 5]. Standard retrieval metrics
like Recall@k, Mean Reciprocal Rank (MRR), Normalized
Discounted Cumulative Gain (NDCG), Mean Average
Precision (MAP), and Precision at some cutoff (Preci-
sion@k) are commonly used to evaluate embeddings [6],
but they do not always reflect how well retrieved pas-
sages enhance answer quality. Additionally, these met-
rics require knowing the source document of key answer
components, yet this information is not always easily
accessible.

In this work, we introduce BES4RAG, a framework
designed to address these limitations by focusing on
evaluating embedding models based on their impact on
question-answering accuracy, rather than relying solely
on traditional retrieval metrics.

CLiC-it 2025: Eleventh Italian Conference on Computational Linguis-
tics, September 24 — 26, 2025, Cagliari, Italy
*Corresponding author.
†

These authors contributed equally.
$ lorenzo.canale@rai.it (L. Canale); stefano.scotta@rai.it
(S. Scotta); alberto.messina@rai.it (A. Messina);
laura.farinetti@polito.it (L. Farinetti)
� 0000-0002-7556-595X (L. Canale); 0000-0003-1078-2985
(S. Scotta); 0000-0002-8262-2449 (A. Messina); 0000-0001-8614-4192
(L. Farinetti)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

BES4RAG implements a fully automated pipeline that
processes datasets, generates multiple-choice questions
(MCQs) using an LLM, indexes passages using different
embedding models, retrieves relevant documents, and
evaluates the accuracy of generated answers. By com-
paring retrieval-augmented responses across different
embeddings and LLM configurations, BES4RAG enables
practitioners to identify the best embedding model for
their specific dataset and use case.

We used BES4RAG to conduct a series of experiments
on three diverse types of datasets: news articles, TV
program transcripts, and movie-related data — including
both scripts and additional metadata — each with varying
lengths and characteristics, addressing three key research
questions.

RQ1 Are optimal embedding choices dataset-
dependent? We demonstrate that different
datasets yield significantly different optimal em-
beddings, reinforcing the importance of dataset-
specific selection.

RQ2 Can small LLMs outperform larger models
when paired with the right embeddings? Our
findings suggest that embedding quality can play
a more significant role than LLM size, highlighting
the necessity of embedding optimization.

RQ3 Do results from automatically generated ques-
tions correlate with those from manually cre-
ated ones? We validate that automated ques-
tion evaluation is a reliable proxy for human-
generated assessments, confirming the robustness
of BES4RAG’s methodology.

mailto:lorenzo.canale@rai.it
mailto:stefano.scotta@rai.it
mailto:alberto.messina@rai.it
mailto:laura.farinetti@polito.it
https://orcid.org/0000-0002-7556-595X
https://orcid.org/0000-0003-1078-2985
https://orcid.org/0000-0002-8262-2449
https://orcid.org/0000-0001-8614-4192
https://creativecommons.org/licenses/by/4.0

In summary, our results emphasize the importance of
evaluating embedding models based on their impact on
question-answering accuracy, with a methodology that
minimizes user effort through the automatic generation
of questions.

2. Related Work
The Massive Text Embedding Benchmark (MTEB) pro-
vides a valuable overview of the performance of hun-
dreds of embedding models across a variety of tasks and
datasets [7]. However, it also presents some limitations.
Even when models are evaluated on multiple datasets
for a given task, these datasets rarely match the specific
characteristics — such as language, document length, or
corpus size — of the data a user might use to build a RAG
system. Additionally, for retrieval tasks, the evaluation
metrics adopted by MTEB may not be fully appropriate
in scenarios where the same information is spread across
multiple documents. In such cases, the ranking of individ-
ual documents becomes less meaningful, as the relevant
information is redundantly present in several of them.

For these reasons, new evaluation methods are emerg-
ing in the literature that incorporate Large Language Mod-
els (LLMs) [8]. For example, in [9], the capabilities of
ChatGPT and Llama2 are leveraged to evaluate embed-
ding models in the context of RAG. Instead of relying
solely on retrieval metrics, ChatGPT is used to rank the
relevance and usefulness of the context retrieved by dif-
ferent embedding models. In [10], the authors propose a
clustering-based approach to analyze the behavior of em-
bedding models within RAG systems. By grouping models
into families based on their retrieval characteristics, the
study reveals that top-k retrieval similarity can show high
variance across different model families, especially at
lower values of 𝑘. This highlights how seemingly similar
models may behave quite differently in practice, reinforc-
ing the importance of dataset-specific and task-aware
embedding evaluation. More recent work has further
emphasized the importance of considering embedding
performance specifically within RAG pipelines. Sakar
and Emekci, in [11], show that balancing context qual-
ity with similarity-based ranking is crucial, along with
understanding trade-offs related to token usage, runtime,
and hardware constraints. Their findings highlight the
role of contextual compression filters in improving hard-
ware efficiency and reducing token consumption, despite
their effect on similarity scores. Similarly, in [12] CO-
COM is introduced, a context compression method that
reduces long input contexts to a small set of compact
embeddings. This approach significantly accelerates gen-
eration time by mitigating the overhead introduced by
lengthy contextual inputs, which directly impacts user
latency.

In parallel, the automatic generation of questions using
LLMs has gained attention, especially in educational and
evaluation contexts. In [13] it is presented a system that
allows users to specify a question type (e.g., reading,
speaking, or listening) and a base text, from which the
system automatically generates questions accordingly.
A more structured approach with PFQS (Planning First,
Question Second) is proposed in [14], in which Llama 2
generates an answer plan that is then used to produce
relevant questions. While these methods demonstrate
the potential of LLMs for generating educational content,
the systematic use of automatically generated questions
for evaluating embedding performance in RAG systems
remains underexplored and merits further investigation.

3. BES4RAG: A Framework for
Selecting Embeddings in RAG.

BES4RAG (Benchmarking Embeddings for Selection in
RAG) is a modular framework written in Python code
and designed to assess embedding models end-to-end by
evaluating their performance in the full RAG pipeline,
rather than relying solely on pre-retrieval metrics.

BES4RAG differs from conventional evaluation meth-
ods by integrating automated question generation and
response evaluation within the RAG loop. This enables
a direct comparison of how different embeddings affect
the final output quality, making the framework suitable
for real-world, task-specific deployment.

The framework, depicted in Figure 1, is publicly avail-
able on GitHub.1 In the following sections, we describe
the individual pipeline modules.

3.1. Data Preprocessing: File Conversion
and Organization

The preprocessing phase is handled by a module that
ingests a variety of input formats—namely JSON, TXT,
and PDF files—and converts them into plain text for
downstream processing. This module also creates a
file_mapping.json file, which records the correspon-
dence between the original input and the resulting text
files. Optionally, a brief textual description can be associ-
ated with each input document. This description can be
generated automatically based on the original filename or
derived from the content using a large language model
(LLM); alternatively, the user can manually specify it.
This step ensures that the dataset is normalized, forming
the foundation for consistent question generation and
passage segmentation in later stages.

1https://github.com/RaiCRITS/BES4RAG

https://github.com/RaiCRITS/BES4RAG

Figure 1: BES4RAG framework pipeline. The schema shows the whole pipeline starting (top left) from the documents which
are converted into text files and then split into passages, see Section 3.1. The embedding of the passages are then computed
and stored in indexes (top right), see Section 3.4. The text files are then sampled and given to an LLM appropriately prompted
to automatically generate multiple-choice questions (bottom left), see Section 3.2. For each of these questions and for each
embedding model, we rank the passages based on their similarity to the question (center right), see Section 3.5. The generated
questions are then prompted to an LLM with the top 𝑘 retrieved passages for all the embedding models and different values of
𝑘, collecting the answers given (bottom right), see Section 3.6. Lastly, comparing the answers given by the LLM in the previous
phase with the correct ones, generated alongside the questions, it is possible to evaluate which embedding model performs
best for the particular dataset considered (bottom), see Section 3.7.

3.2. Automatic Questions Generation
A central component of BES4RAG is the automatic gener-
ation of MCQs from the input text. Using a LLM, the
questions_generator module selects random text
segments from the normalized dataset and formulates
MCQs based on a customizable prompt template. The
standard prompt used for question generation is in Figure
2. The questions are stored in JSON format.

3.3. Text Segmentation
Once the dataset is converted into text files, it is
segmented into passages suitable for indexing. The
passages_generator module performs this task by
applying a specified tokenizer to the input text. A key
consideration in this process is that the segmentation
into passages is determined by the embedding model
being used since the tokenizers have a maximum token
length. By default, the framework uses the maximum
token length supported. However, it is possible to specify
a smaller token length.

3.4. Passages Indexing
The segmented passages are embedded using one or more
embedding models via the indexer module. This mod-
ule computes and stores vector representations of the
passages.

3.5. Passages Retrieval
Given a set of questions and indexed embeddings,
the passages_retriever module ranks the passages
based on similarity, typically using cosine similarity,
though other similarity metrics can be employed depend-
ing on the embedding model. The retrieved passages are
then stored, organized by embedding model, allowing for
flexible experimentation with different top-𝑘 retrieval
sizes.

3.6. Question Answering
Using the retrieved passages and corresponding ques-
tions, the questions_answering module evaluates
how well an LLM can answer each question in a RAG

Create a multiple-choice question in the same language
as the text below, based solely on its content.

<<<text>>>

The question must be generic and must not contain
references to the article (e.g., "in the article..." or
"based on the text").

If the text mentions a specific event, include full
details (e.g., name of war, date if available). Avoid
vague temporal references like "today."

Generate 4 answer options (1 correct, 3 plausible but
incorrect), each with an explanation of why it is
correct or not, based only on the text.

Return your answer in this JSON format:

{
"question": "...",
"options": [
{

"text": "...",
"is_correct": true/false,
"explanation": "..."

},
...

]
}

Return only the JSON object in the same language as the
input.

Figure 2: Prompt used for automatic question generation.

setup. For each value of 𝑘 (with default values of 𝑘 =
0, 1, 2, 3, 4, 5, 10), the module combines the top-𝑘 re-
trieved passages with the question prompt and queries an
LLM to generate an answer. The prompt used for let the
LLM answer the questions is in Figure 3. The results are
stored in structured JSON files, organized by embedding
and LLM configuration.

Answer the following multiple-choice question:

<<<multiple choice question>>>

using the following textual documents as possible
sources:

<<<k passages retrieved>>>

Respond by providing only the numerical identifier of
the correct answer from the options 0, 1, 2, 3.
Do not respond with anything other than one of these
numbers even if you do not know the answer.

Figure 3: Prompt used for question answering.

3.7. Evaluation
The final module, q&a_evaluator, assesses the perfor-
mance of the RAG system across different embeddings by
computing the answer accuracy over all questions. For
each embedding model and retrieval configuration (e.g.,
varying 𝑘), the module calculates accuracy and generates
a plot to visualize performance. This plot is crucial for
identifying the embedding model that leads to the best
overall performance in the specific domain or dataset
under analysis. Additionally, it helps determine the opti-
mal value of 𝑘 for the considered task. This evaluation
also enables a comparison between free and open-source
embedding models and their proprietary counterparts,
providing insights into the trade-offs between computa-
tional cost and accuracy.

4. Experimental Setup
In this section, we describe the experimental setup used
to evaluate the performance of the proposed system. We
first provide an overview of the datasets used, followed
by details about the embedding models and LLMs em-
ployed in the pipeline. Finally, we explain the evaluation
metric adopted to measure the system’s performance in
answering questions.

4.1. Datasets
We evaluate our system on three distinct datasets, each
representing a different domain and content type. These
datasets were selected to test the system’s versatility and
ability to generalize across varying text types, from news
articles to transcripts of TV programs and movie scripts.

• RaiNews: This dataset consists of approximately
16,000 news articles, from the RaiNews portal,
covering a wide range of topics from current
events. The articles are typically short and serve
as concise textual documents, ideal for testing the
system’s ability to retrieve and generate answers
from concise content.

• Medicina33: This dataset includes roughly 159
full transcripts from the Medicina 33 TV program.
This Italian television program focuses on medi-
cal topics, with discussions featuring experts in
the field of medicine. The transcripts are longer
with respect to the news, making them suitable
for testing the system’s handling of more com-
plex, specialized content.

• Movies: This dataset comprises approximately
2,000 movie scripts, metadata, and reviews. It in-
cludes both short and long documents, providing
a diverse set of examples ranging from concise

Table 1
Embedding models adopted for all three datasets

Type Model

ColBERT antoinelouis/colbert-xm
openai text-embedding-3-large
openai text-embedding-3-large (512 token limit)
Sentence Transformers intfloat/multilingual-e5-large
Sentence Transformers sentence-transformers/all-MiniLM-L6-v2
Sentence Transformers dunzhanq/stella_en_1.5B_v5

summaries to lengthy dialogues. This dataset is
intended to evaluate the system’s performance
on text with a narrative structure and its ability to
handle various types of content, such as reviews
and scripts.

The RaiNews and Medicina33 datasets are in Italian,
while the Movies dataset is in English.

4.2. Embedding Models
In our experiments, we distinguish between three main
families of embedding models: ColBERT, OpenAI embed-
dings, and Sentence Transformers.

The ColBERT model, described in [15], is a state-of-the-
art method for efficient and effective passage retrieval.
ColBERT uses a bi-level representation of text, allowing
for a more compact and computationally efficient rep-
resentation of passages. The antoinelouis/colbert-xm2

model, based on this framework, is a multilingual variant,
providing advantages in multilingual tasks by capturing
semantic meaning in multiple languages simultaneously.

Openai offers a range of powerful models for generat-
ing embeddings from text, including the text-embedding-
3-large3 model. The main disadvantage of these models
is that they are proprietary, and the vector representation
is available only through a paid API.

The Sentence Transformers family includes several mod-
els optimized for sentence-level embeddings.

• intfloat/multilingual-e5-large4[16]: A multilin-
gual model capable of generating high-quality
embeddings for text in multiple languages.

• sentence-transformers/all-MiniLM-L6-v25 [17]:
A smaller, faster variant of the BERT model, pro-
viding efficient sentence embeddings while main-
taining a high degree of accuracy for various NLP
tasks.

2https://huggingface.co/antoinelouis/colbert-xm
3https://platform.openai.com/docs/models/
text-embedding-3-large

4https://huggingface.co/intfloat/multilingual-e5-large
5https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

• dunzhanq/stella_en_1.5B_v56 [18]: A large-
scale transformer model fine-tuned for English
sentence-level tasks, designed to provide power-
ful embeddings for more complex textual data.

Remark 1. We selected primarily multilingual embed-
ding models since our experiment involves two datasets
in Italian and one in English (see Section 4.1), to reduce
potential mismatches between dataset languages and
model training data. This choice ensures broader lan-
guage coverage and more robust cross-lingual represen-
tations. However, BES4RAG does not aim to recommend
a specific model a priori, but rather to evaluate a user-
defined set of models and identify the best-performing
one for the dataset considered.

To compare the embeddings produced by these models,
the most common similarity measure is cosine similarity,
which computes the cosine of the angle between two
vectors, capturing their relative orientation in the em-
bedding space. Cosine similarity is used for all models
in our setup except for those in the ColBERT family. For
the latter, such as antoinelouis/colbert-xm, we instead
use the MaxSim function, a more specialized similarity
measure designed for passage retrieval that works by
first computing the similarity between each individual
query token and each document token using a similarity
metric like cosine similarity; it then takes the maximum
of these token-level similarities as the final relevance
score between the query and the document.

Finally, for all datasets, the maximum token limits for
embeddings were applied to split the textual data into
passages, except for the OpenAI model text-embedding-
3-large (512 token limit), which is the same model as
text-embedding-3-large but with maximum tokens length
limited to 512. The decision of considering also this case
was made based on the observation that increasing the
size of passages, although possible with this model, does
not necessarily improve the quality of the retrieved in-
formation. This will become clear when observing the
results in Section 5.

6https://huggingface.co/dunzhanq/stella_en_1.5B_v5

https://huggingface.co/antoinelouis/colbert-xm
https://platform.openai.com/docs/models/text-embedding-3-large
https://platform.openai.com/docs/models/text-embedding-3-large
https://huggingface.co/intfloat/multilingual-e5-large
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/dunzhanq/stella_en_1.5B_v5

4.3. Large Language Models
In our experimental setup, we employed two distinct
families of LLMs for the generation of questions and
answering, respectively. For question generation,
GPT-4o7 model was adopted through the OpenAI API.
For answering, we adopted two variants of the LLaMA
3.1 series developed by Meta: the 70-billion parameter
model meta-llama/Llama-3.1-70B-Instruct8

and the smaller 8-billion parameter version
meta-llama/Llama-3.1-8B-Instruct9.

To ensure consistency and reduce stochastic variation
across outputs, a temperature of 0 was used during infer-
ence for all models. Additionally, for answer generation
tasks, the maximum output length was restricted to a
single token, since the expected answer is always a dis-
crete value in the set {0, 1, 2, 3}, in accordance with the
prompt specification described in Section 3.6.

4.4. Evaluation Metric
Unlike to what is done in [9], we do not aim to evaluate
the performance of our embedding models using a LLM
as an external judge. In other words, we do not rely on
the LLM to assess the quality of the retrieved passages
or to rate their relevance. Instead, we consider the end
goal of the pipeline: whether the final multiple-choice
answer produced by the RAG system is correct.

To this end, we introduce a simple yet informative
metric that we refer to as Question Answering Accuracy
— or simply accuracy in the remainder of this paper. For
each question, the system selects an answer option based
on the response generated by the LLM, using the pas-
sages retrieved by the embedding model. The accuracy
is computed as the proportion of questions for which the
selected answer matches the correct one, as defined in
the ground truth. This metric directly reflects the effec-
tiveness of the entire RAG pipeline in producing correct
answers, integrating both retrieval and generation per-
formance.

Remark 2. Theoretically, the pipeline could be adapted to
incorporate standard retrieval metrics such as those men-
tioned in Section 1, by changing the question generation
module so that questions are generated from individual
passages rather than from full documents. However, we
adopt the Question Answering Accuracy metric for its di-
rect alignment with the end goal of the RAG pipeline:
selecting the embedding that enables correct answers.
While we acknowledge its binary nature and the lack
of granularity in capturing partial understanding or pas-
sage quality, we consider this trade-off acceptable for an
automated evaluation setup. More expressive metrics

7https://openai.com/index/hello-gpt-4o/
8https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
9https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

often require detailed annotations that are not always
available.

5. Results and Discussion

RQ1: Optimal embedding choices vary
across datasets
As observed in Figure 4, the accuracy of the Llama 3.1
70B model on automatically generated questions exhibits
variations not only with the number of retrieved docu-
ments, but also with respect to the choice of embedding
model. The ranking of the embedding models varies
across datasets, as demonstrated by the different per-
formance patterns observed in the first and subsequent
positions. This variation highlights the dataset-specific
characteristics that influence the efficacy of embedding
models, further emphasizing the utility of the proposed
framework for selecting the optimal embeddings for
each dataset, rather than relying on a one-size-fits-all
approach.

RQ2: Small LLMs can outperform bigger
LLMs with the right embedding
In some cases, the choice of the embedding model may
be even more critical than selecting the most powerful
LLM within a RAG system. This hypothesis is supported
by experimenting BES4RAG using two different LLMs
framework on the same dataset and with the same em-
bedding models. As shown in Figure 5, these experi-
ments demonstrate that using a more effective embed-
ding model with a smaller LLM can lead to better per-
formance than relying on a more powerful LLM com-
bined with weaker embedding models. In particular,
LLama 3.1 8B, when paired with antoinelouis/colbert-xm,
intfloat/multilingual-e5-large, or text-embedding-3-large,
outperforms the larger LLama 3.1 70B when the latter is
combined with sentence-transformers/all-MiniLM-L6-v2
or dunzhanq/stella_en_1.5B_v5, at least for lower values
of 𝑘. Indeed, for higher values of 𝑘, the performance
of the smaller LLM deteriorates, likely due to the in-
creased prompt length exceeding its optimal processing
capacity. These experiments highlight the importance of
carefully evaluating the choice of the embedding model,
especially when considering the use of smaller LLMs. In
fact, selecting an effective embedding model can enable
the adoption of smaller language models, thus reducing
computational requirements and leading to more cost-
effective and resource-efficient solutions.

https://openai.com/index/hello-gpt-4o/
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

(a) RaiNews (b) Medicina33 (c) Movies

Figure 4: Accuracy comparison of LLama 3.1 70B on automatically generated questions from different datasets depending
on the embedding models and the number of retrieved documents used to answer the questions (x-axis). The legend (the
same for the three plots), with shortened names for the models in Section 4.2, is displayed only in (b) to not compromise the
readability of the plots.

Figure 5: Accuracy comparison between Llama 3.1 8B and
Llama 3.1 70B on automatically generated questions from
the Rainews dataset depending on the embedding models
(the ones in Section 4.2, here with shortened names) and the
number of retrieved documents used to answer the questions
(x-axis).

RQ3: Automatically generated and
user-generated questions
To assess whether evaluation using automatically gener-
ated questions provides results consistent with human-
authored ones, we relied on a manually curated set of

1,414 questions created by approximately eighty students
enrolled in an undergraduate database course. These
students were instructed to formulate meaningful and
unambiguous multiple-choice questions based on the
movies scripts, plots and metadata.

Table 2
Pearson correlation between accuracy matrices obtained from
manual and automatic questions for the Movies dataset, using
different normalization strategies.

Normalization Strategy Pearson Correlation (r)

None (raw scores) 0.78
Min-max per row 0.80
Min-max over full matrix 0.90

We then compared the accuracy scores obtained using
these human-authored questions with the automatically
generated ones for the Movies dataset. Specifically, for
each embedding model and for each value of 𝑘 in the
top-𝑘 retrieval, we computed the accuracy of the final
answers returned by the RAG pipeline. This yielded two
matrices of scores: one for manual questions and one
for automatically generated questions, where rows cor-
respond to different embedding models and columns to
different 𝑘 values.

We then calculated the Pearson correlation coefficient
between the corresponding entries of these two matrices
to quantify the alignment between the two evaluation
modes. As shown in Table 2, the raw accuracy values
already exhibit a strong correlation (𝑟 = 0.78). When ap-

plying min-max normalization per row (i.e., within each
embedding), the correlation improves slightly (𝑟 = 0.80),
indicating that the relative behavior of each model across
different 𝑘 remains consistent. Finally, full matrix-wise
normalization further increases the correlation to 𝑟 =
0.90, suggesting a strong structural similarity between
the two evaluation matrices. These findings support the
use of automatically generated questions as a viable proxy
for manual evaluation.

Remark 3. In addition to the quantitative correlation anal-
ysis, we manually inspected a random sample of both
human and automatically generated questions to assess
their coherence and correctness. The review confirmed
a high level of quality in both sets. The automatically
generated questions typically referred to more specific
and localized portions of the source text. Anyway, the
strong correlation observed between the two evaluation
modes further supports the use of automatically gener-
ated questions as a reliable and efficient benchmark for
assessing embedding model performance.

6. Conclusion and Future Work
In this work, we presented BES4RAG, a modular frame-
work for the evaluation of embedding models in retrieval-
augmented generation (RAG) pipelines. The framework
provides a comprehensive approach by focusing on end-
to-end evaluation, incorporating automatic question gen-
eration, passage segmentation, and answer evaluation.
Unlike traditional methods, which rely on pre-retrieval
metrics, BES4RAG integrates task-specific performance
assessments, allowing for a more accurate comparison
of embedding models based on their impact on the final
output.

BES4RAG is also versatile, making it suitable for a
variety of use cases, including datasets that represent
subsets of larger corpora. A prime example would be
transcribed multimedia archives, where smaller portions
of the dataset can be used to effectively represent the
entire collection.

Although BES4RAG demonstrates strong performance
and general applicability across diverse datasets, it is
not without limitations. One notable limit lies in its
reliance on automatically generated MCQs, which, al-
though efficient and scalable, may not always be adequate
in highly domain-specific contexts, i.e. in technical or
expert-driven fields where factual precision or nuanced
phrasing is critical. Furthermore, the binary nature of the
evaluation metric is easily interpretable, but it can fail to
capture partial understanding, near-miss responses, or
the contextual relevance of the retrieved passages. This
trade-off between simplicity and expressiveness, while
intentional for automation and reproducibility, highlights

the need for complementary metrics or qualitative assess-
ments in more complex scenarios.

Looking ahead, avenues for future work include the
following:

• Investigating whether using two different LLMs
for question generation and retrieval provides
better performance or if using the same LLM for
both tasks yields comparable results.

• Exploring alternative methods for question gener-
ation that consider larger portions of documents.

• Introducing new metrics to assess questions with-
out options, potentially linking detailed answers
back to one of the predefined options, offering
more flexibility in evaluating the question-answer
generation process.

• Integrate within the pipeline some element that
returns statistical significance measures of the
results obtained, such as paired tests to assess
whether differences between embedding models
are statistically significant. Moreover, regarding
the evaluation of LLM’s answers it could be in-
teresting to analyze the token-level probability
distribution to assess how embeddings affect the
confidence of LLM predictions.

• Study the scalability of the proposed approach
on significantly larger datasets, evaluating both
its performance and reliability under increased
data volume, as well as the computational time
and resource requirements of the entire pipeline.

References
[1] P. Lewis, E. Perez, A. Piktus, F. Petroni,

V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.
Yih, T. Rocktäschel, S. Riedel, D. Kiela, Retrieval-
augmented generation for knowledge-intensive
nlp tasks, in: Proceedings of the 34th International
Conference on Neural Information Processing
Systems, NIPS ’20, Curran Associates Inc., Red
Hook, NY, USA, 2020, pp. 9459–9474.

[2] R. Egger, Text Representations and Word
Embeddings, Springer International Pub-
lishing, Cham, 2022, pp. 335–361. URL:
https://doi.org/10.1007/978-3-030-88389-8_16.
doi:10.1007/978-3-030-88389-8_16.

[3] T. Kim, J. Springer, A. Raghunathan, M. Sap,
Mitigating bias in rag: Controlling the embed-
der, 2025. URL: https://arxiv.org/abs/2502.17390.
arXiv:2502.17390.

https://doi.org/10.1007/978-3-030-88389-8_16
http://dx.doi.org/10.1007/978-3-030-88389-8_16
https://arxiv.org/abs/2502.17390
http://arxiv.org/abs/2502.17390

[4] N. Reimers, I. Gurevych, Sentence-bert: Sentence
embeddings using siamese bert-networks, in: Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing, Association
for Computational Linguistics, 2019. URL: https:
//arxiv.org/abs/1908.10084.

[5] S. Wang, R. Koopman, Semantic embedding
for information retrieval, in: 5th Workshop on
Bibliometric-Enhanced Information Retrieval, BIR
2017, CEUR, 2017, pp. 122–132.

[6] F. Radlinski, N. Craswell, Comparing the sensi-
tivity of information retrieval metrics, in: Pro-
ceedings of the 33rd International ACM SIGIR
Conference on Research and Development in In-
formation Retrieval, SIGIR ’10, Association for
Computing Machinery, New York, NY, USA, 2010,
p. 667–674. URL: https://doi.org/10.1145/1835449.
1835560. doi:10.1145/1835449.1835560.

[7] N. Muennighoff, N. Tazi, L. Magne, N. Reimers,
MTEB: Massive text embedding benchmark, in:
A. Vlachos, I. Augenstein (Eds.), Proceedings
of the 17th Conference of the European Chap-
ter of the Association for Computational Lin-
guistics, Association for Computational Linguis-
tics, Dubrovnik, Croatia, 2023, pp. 2014–2037.
URL: https://aclanthology.org/2023.eacl-main.148/.
doi:10.18653/v1/2023.eacl-main.148.

[8] J. Isbarov, K. Huseynova, Enhanced document re-
trieval with topic embeddings, in: 2024 IEEE 18th
International Conference on Application of Infor-
mation and Communication Technologies (AICT),
2024, pp. 1–5. doi:10.1109/AICT61888.2024.
10740455.

[9] S. Kukreja, T. Kumar, V. Bharate, A. Purohit,
A. Dasgupta, D. Guha, Performance evaluation
of vector embeddings with retrieval-augmented
generation, in: 2024 9th International Con-
ference on Computer and Communication Sys-
tems (ICCCS), 2024, pp. 333–340. doi:10.1109/
ICCCS61882.2024.10603291.

[10] L. Caspari, K. G. Dastidar, S. Zerhoudi, J. Mitrovic,
M. Granitzer, Beyond benchmarks: Evaluating em-
bedding model similarity for retrieval augmented
generation systems, 2024. URL: https://arxiv.org/
abs/2407.08275. arXiv:2407.08275.

[11] T. Şakar, H. Emekci, Maximizing rag efficiency:
A comparative analysis of rag methods, Natural
Language Processing 31 (2024) 1–25. doi:10.1017/
nlp.2024.53.

[12] D. Rau, S. Wang, H. Déjean, S. Clinchant, J. Kamps,
Context embeddings for efficient answer generation
in retrieval-augmented generation, in: Proceedings
of the Eighteenth ACM International Conference
on Web Search and Data Mining, 2025, pp. 493–502.

[13] J.-S. Park, S.-M. Park, Llm-based question gen-

eration learning system for improve users’ liter-
acy skills, The Journal of the Korea institute of
electronic communication sciences 19 (2024) 1243–
1248.

[14] K. Li, Y. Zhang, Planning first, question sec-
ond: An LLM-guided method for controllable
question generation, in: L.-W. Ku, A. Mar-
tins, V. Srikumar (Eds.), Findings of the As-
sociation for Computational Linguistics: ACL
2024, Association for Computational Linguistics,
Bangkok, Thailand, 2024, pp. 4715–4729. URL: https:
//aclanthology.org/2024.findings-acl.280/. doi:10.
18653/v1/2024.findings-acl.280.

[15] O. Khattab, M. Zaharia, Colbert: Efficient and ef-
fective passage search via contextualized late inter-
action over bert, 2020. URL: https://arxiv.org/abs/
2004.12832. arXiv:2004.12832.

[16] L. Wang, N. Yang, X. Huang, L. Yang, R. Majumder,
F. Wei, Multilingual e5 text embeddings: A technical
report, 2024. URL: https://arxiv.org/abs/2402.05672.
arXiv:2402.05672.

[17] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, M. Zhou,
Minilm: Deep self-attention distillation for task-
agnostic compression of pre-trained transform-
ers, 2020. URL: https://arxiv.org/abs/2002.10957.
arXiv:2002.10957.

[18] D. Zhang, J. Li, Z. Zeng, F. Wang, Jasper
and stella: distillation of sota embedding mod-
els, 2025. URL: https://arxiv.org/abs/2412.19048.
arXiv:2412.19048.

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.1145/1835449.1835560
https://doi.org/10.1145/1835449.1835560
http://dx.doi.org/10.1145/1835449.1835560
https://aclanthology.org/2023.eacl-main.148/
http://dx.doi.org/10.18653/v1/2023.eacl-main.148
http://dx.doi.org/10.1109/AICT61888.2024.10740455
http://dx.doi.org/10.1109/AICT61888.2024.10740455
http://dx.doi.org/10.1109/ICCCS61882.2024.10603291
http://dx.doi.org/10.1109/ICCCS61882.2024.10603291
https://arxiv.org/abs/2407.08275
https://arxiv.org/abs/2407.08275
http://arxiv.org/abs/2407.08275
http://dx.doi.org/10.1017/nlp.2024.53
http://dx.doi.org/10.1017/nlp.2024.53
https://aclanthology.org/2024.findings-acl.280/
https://aclanthology.org/2024.findings-acl.280/
http://dx.doi.org/10.18653/v1/2024.findings-acl.280
http://dx.doi.org/10.18653/v1/2024.findings-acl.280
https://arxiv.org/abs/2004.12832
https://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832
https://arxiv.org/abs/2402.05672
http://arxiv.org/abs/2402.05672
https://arxiv.org/abs/2002.10957
http://arxiv.org/abs/2002.10957
https://arxiv.org/abs/2412.19048
http://arxiv.org/abs/2412.19048

	1 Introduction
	2 Related Work
	3 BES4RAG: A Framework for Selecting Embeddings in RAG.
	3.1 Data Preprocessing: File Conversion and Organization
	3.2 Automatic Questions Generation
	3.3 Text Segmentation
	3.4 Passages Indexing
	3.5 Passages Retrieval
	3.6 Question Answering
	3.7 Evaluation

	4 Experimental Setup
	4.1 Datasets
	4.2 Embedding Models
	4.3 Large Language Models
	4.4 Evaluation Metric

	5 Results and Discussion
	6 Conclusion and Future Work

