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Abstract
Large Language Models (LLMs) have demonstrated remarkable performance in machine translation (MT), specifically
concerning high-resource European languages. However, their extensive computational requirements raise sustainability
concerns. This paper investigates the potential of smaller, fine-tuned language models as a more sustainable alternative for
MT tasks. We conduct a comparative analysis of model performance in terms of translation quality and CO2eq emissions,
and examine the key errors associated with using smaller models. Furthermore, we propose a novel metric that balances
translation quality against environmental impact, aiming to inform more sustainable model selection in MT research and
practice.
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1. Introduction
MT has been a core topic in natural language processing
(NLP) for several decades, evolving from rule-based sys-
tems to statistical methods, and more recently to neural
machine translation (NMT) and transformer-based mod-
els. The emergence of LLMs has significantly advanced
the state-of-the-art in MT, demonstrating remarkable
performance on various NLP tasks [1].

Their ability to generate fluent, context-aware trans-
lations in different domains has positioned LLMs at the
forefront of MT research [2]. Their ability to model con-
text, semantics, and discourse phenomena makes them
highly attractive for both academic and industrial trans-
lation applications.

However, this performance comes at a significant envi-
ronmental cost. Training and deploying LLMs consumes
enormous computational resources, leading to consider-
able carbon emissions and infrastructure demands [3, 4].
These challenges have prompted the exploration of more
sustainable alternatives.

This paper investigates whether smaller language mod-
els can serve as efficient and environmentally sustainable
valid alternatives to LLMs in MT. Specifically, we will
fine-tune the Gemma-3-4B[5] model on a parallel English-
Italian (EN-IT) parallel corpus, and evaluate its perfor-
mance, with human and automatic evaluation, against
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larger models. This setup allows us to assess the real-
world viability of small models for machine translation
when fine-tuned for specific language pairs and domains.

We conduct a comprehensive analysis of model perfor-
mance, in terms of translation quality and CO2eq emis-
sions, validating our results with a human evaluation
of the key errors associated with each model. Finally,
we introduce a metric called Carbon-Adjusted Quality
Score (CAQS), designed to facilitate sustainable model se-
lection, that quantifies the trade-off between translation
quality and sustainability.

2. Background

2.1. LLMs and Translation
LLMs have achieved state-of-the-art results in MT, by
leveraging extensive pretraining on multilingual corpora,
enabling them to deliver remarkable performance across
a wide range of domains and language pairs [6]. In con-
trast to NMT systems, which rely primarily on paral-
lel corpora, LLMs are pretrained on massive web-scale
monolingual and multilingual datasets. This enables
them to generate high-quality translations even in do-
mains where parallel data is limited [7].

Notably, GPT-based models excel at producing con-
textually accurate translations, effectively capturing dis-
course relations and maintaining sentence-level coher-
ence. They consistently outperform encoder-decoder
architectures such as Transformer-big and M2M100, par-
ticularly in zero-shot and few-shot settings [8].

Moreover, LLMs support document-level translation
by leveraging discourse-aware context windows, which
enable the maintenance of lexical cohesion and consistent
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resolution of anaphoric references across sentences [9].
This capability results in more fluent translations, making
LLMs increasingly favored in professional translation
settings.

The adoption of LLMs, however, requires substantial
computational resources and infrastructure, which may
not be feasible for all organizations or languages. Beyond
these practical limitations, the widespread adoption of
LLMs also raises significant concerns about their envi-
ronmental sustainability.

2.2. LLMs Sustainability
While Large Language Models (LLMs) have enabled re-
markable progress in NLP, their growing environmental
footprint raises important sustainability concerns. Train-
ing large-scale models such as GPT-3, with hundreds
of billions of parameters, can consume up to 1.3 GWh
of electricity, comparable to the yearly energy usage of
more than 100 US homes [10]. This results in hundreds of
tons of CO2 emissions, depending on the carbon intensity
of the power grid.

In addition to training, the inference phase of LLMs
also significantly contributes to their overall carbon foot-
print, particularly in large-scale deployments. While the
energy cost of a single inference is lower than that of
training, the cumulative emissions can become substan-
tial depending on usage patterns. For example, serving
a single ChatGPT prompt may emit over 4g of CO2eq,
more than 20 times the emissions of a typical web search
[11].

The same study emphasizes that total environmental
impact depends on a combination of factors: model size,
batch size, and hardware type. The latter reflects the
impact of producing high-performance GPUs, which in-
volves substantial embodied carbon emissions. Although
these emissions occur at production time, they contribute
to the model’s overall environmental cost throughout its
operational lifetime.

2.3. Small Language Models
Recent research has emphasized the growing feasibility
and importance of SLMs as efficient alternatives to LLMs
in constrained environments [12, 13]. SLMs, typically
ranging from hundreds of millions to a few billion pa-
rameters, are substantially more resource-efficient and
accessible, especially when tailored to specific tasks.

SLMs benefit from architectural simplifications, such
as compact tokenizers and reduced model width and
depth, which are optimized to preserve key capabili-
ties while minimizing parameter overhead [14]. Small
models, like Gemma [15] and PanGu-𝜋-1.5B Pro model
with only a few billion parameters have recently out-
performed much larger models on several benchmarks

due to optimizations in model architecture and training
strategy [14].

Moreover, recent studies show that even highly com-
plex capabilities like multi-step reasoning, previously
thought to emerge only in models over 100B parameters,
can be acquired by SLMs through targeted fine-tuning
and distillation. Distilling chain-of-thought reasoning
abilities, for instance, from GPT-3.5 into FlanT5 variants
(250M to 3B) resulted in significant performance improve-
ments on math reasoning tasks without the need for full
retraining of the model’s weights [16].

A comprehensive survey of SLMs underscores the
value of model compression techniques such as pruning,
quantization, and knowledge distillation. These enable
the deployment of efficient models on mobile and edge de-
vices while maintaining competitive accuracy for many
tasks [17]. The adoption of SLMs is particularly promis-
ing for democratizing NLP, enabling smaller institutions
and low-resource languages to benefit from modern AI
without the environmental or infrastructural burden of
LLMs.

In this study, we evaluate whether SLMs, when com-
bined with modern fine-tuning strategies and lightweight
architectures, could offer a pragmatic and sustainable
path forward for machine translation and other NLP ap-
plications.

3. Fine-tuning a SLM
To demonstrate the effectiveness of using SLMs as sus-
tainable alternatives to larger, more resource-intensive
models in machine translation, we compare two state-
of-the-art models: GPT-4o-mini [18] and an open-source
model, Gemma-3-4B [15], which is significantly smaller
than its OpenAI counterpart.

We fine-tune Gemma-3-4B on a carefully curated sub-
set of the OpenSubtitles corpus, obtained from the Opus
Corpus [19]. We evaluate both models on a held-out
test set of 400 segments for the English–Italian (EN-IT)
language pair and present our findings.

3.1. Dataset Curation
For our experiments, we focused on the EN–IT subset
of the OpenSubtitles corpus, made available through the
Opus Corpus repository. While OpenSubtitles is a rich
resource for dialogue-based translation data, it also con-
tains a considerable amount of noise due to its automatic
extraction and alignment process. Therefore, careful cu-
ration was necessary to ensure the quality and relevance
of the dataset.

We began by removing duplicate entries and any
empty lines. Following this, we applied the langdetect
[20] tool to verify the language of each sentence. This



step was essential, as web-crawled corpora, although
intended to be language-specific, occasionally contain
segments in other languages. Sentences detected to be in
languages outside our target pair, and that could not be
classified with a high confidence score, were filtered out.

Finally, we applied COMET-QE [21], a quality estima-
tion model, to score the remaining sentence pairs. Using
these scores, we selected the top 100,000 highest-quality
translations for use in our fine-tuning experiments. The
strategy of mining large datasets and selecting top-k sen-
tence pairs based on quality metrics for fine-tuning helps
to further filter out noisy segments and ensures that the
limited available data contribute maximally to model
training [22]. This approach is consistent with our goal
of reducing computational costs. By carefully curating a
smaller but higher-quality dataset, we limit energy con-
sumption and the associated environmental costs, while
maximizing translation performance.

Table 1
Corpus size after each curation step.

Step Pairs Remaining

Original Dataset 50,000,000

Training Set 100,000
Test Set 400

3.2. Training
The Gemma-3-4B model was fine-tuned for three epochs
using Low-Rank Adaptation (LoRA) [23], a fine-tuning
technique which injects small trainable matrices in the
model’s weights. The adoption of LoRA for fine-tuning
has shown strong empirical results in machine transla-
tion [24, 25], enhancing efficiency, while reducing train-
ing time and computational costs. As demonstrated in
experiments conducted by [26], fine-tuning with LoRA
obtained the same improvements in terms of BLEU score
[27], while drastically reducing training time and modify-
ing only a small number of trainable parameters, with re-
spect to supervised fine-tuning involving all parameters
of the original network. In our case, we train effectively
0.42% of the trainable parameters, corresponding to the
LoRA adapter matrices injected in Gemma-3-4B.

Our fine-tuning pipeline was implemented using the
Hugging Face Transformers library [28], leveraging its
integration with the PEFT library. For the LoRA config-
uration, we set the rank (r) to 16 and the scaling factor
(alpha) to 16, with a dropout rate of 0.05 to improve
generalization. The training was carried out on a single
NVIDIA A100 GPU using mixed-precision (fp16) compu-
tation. We used the CodeCarbon1 library to monitor the
1https://mlco2.github.io/codecarbon/index.html

environmental impact of our training process.
CodeCarbon is a Python library that estimates car-

bon emissions by tracking the energy consumption of
computing resources (CPU, GPU, RAM) during code exe-
cution and combining this data with the carbon intensity
of the electricity grid based on geographic location.

The fine-tuning session consumed approximately 0.65
kWh, resulting in an estimated 162 g CO2eq under an
average EU grid intensity of 250 gCO2/kWh.

3.3. Gemma-3 Evaluation
We conduct our evaluation on a held-out test set of 400
segments from the same corpus, ensuring no overlap
with the training data. Table 2 reports the evaluation
of EN–IT translation performance for Gemma-3-4B be-
fore and after LoRA fine-tuning, using BLEU [27], chrF
[29], and COMET [30] as quality metrics. Our fine-tuned
Gemma-3-4B model, with only 0.42% of additional train-
able parameters, shows a notable improvement over the
base version, achieving a +4 point gain in BLEU, a modest
increase in chrF, and a +1 point gain in COMET. These
results place our model on par with GPT-4o in COMET
and above GPT-4o-mini in all three metrics.

In addition to performance, we also measure the en-
vironmental impact of inference using the CodeCarbon
library. The estimated carbon emissions per inference for
the fine-tuned model are approximately 0.028g CO2eq,
twice that of the base model, but significantly lower than
GPT-4o models, each exceeding 0.42g per inference as
estimated in a relevant study [31].

Our evaluation demonstrates that fine-tuning Gemma-
3-4B with LoRA leads to competitive performance gains
with low additional environmental cost.

4. Quality-Sustainability Trade-Off
In our second experiment, to further assess the viability
of trading off quality for sustainability with the use of
SLMs, we extend our evaluation on a set of multilingual
LMs, of different parameter sizes. We select the models
for our evaluation based on state-of-the-art performance
and usage in the research community. We benchmark
each model on the same held-out EN–IT test set, using
BLEU, chrF and COMET, and log the CO2eq emissions per
inference using the CodeCarbon framework. Importantly,
we emphasize in our approach that a sustainable model
choice should not be based on its parameter size alone,
but actual carbon emissions.

As shown in Table 3, we highlight that the relation-
ship between model size and emissions is non-linear.
For instance, Qwen-3B [32], despite its relatively small
size, exhibits disproportionately high emissions. This can
be attributed to its reasoning behavior during inference,



Table 2
Evaluation of EN–IT translation performance for Gemma-3-4B before and after LoRA fine-tuning. Metrics include BLEU, chrF,
and WMT22 COMET-DA. We also report estimated CO2eq emissions per inference.

Model BLEU chrF COMET CO2eq (g)

Gemma-3-4B (Base) 46.0 69.0 93.0 0.014
Gemma-3-4B (Ours) 50.0 72.0 94.0 0.028
GPT-4o-mini 49.0 71.0 92.0 >0.42
GPT-4o 52.0 73.0 94.0 >0.42

which results in extended reasoning outputs before gen-
erating a final answer. This behavior increases inference
latency and environmental cost.

Similarly, the assumption that larger models necessar-
ily produces more carbon emissions does not always hold.
This is the case for models developed with a Mixture-of-
Experts (MoE) architectures. In these models, only a sub-
set of the total parameters is activated during inference.
As a result, MoE models like Mixtral, although large in
aggregate size, can have lower or comparable emissions
to smaller, densely activated models. This decoupling
of parameter size and runtime efficiency highlights the
need for measuring more empirical results, such as CO2eq
emissions.

Therefore, we introduce a Carbon-Adjusted Qual-
ity Score (CAQS) metric as a measure of model cost-
effectiveness, and we calculate it on each corpus transla-
tion generated by the models evaluated in our study. Our
CAQS score penalizes each gram of carbon emissions
exponentially, while ensuring that low-quality models
are not rewarded more than high-quality ones, regardless
of their efficiency. We define the CAQS metric as follows.

CAQS = avg(METRICS)× exp(−𝜆× CO2eq) (1)

Here, 𝜆 is a sensitivity parameter that controls the
strength of the carbon penalty and can be adjusted ac-
cording to the user’s desired trade-off between quality
and sustainability. The exponential penalty function re-
flects the urgent need for sustainable AI, where a single
increase in emissions becomes increasingly problematic.
In our experiment, we use 𝜆 = 2 and provide ranking
for interpretability.

Table 3 shows that Gemma-3-4B and Magistral-Small
[33] rank first according to our metric, while larger and
slighly superior models, like Llama-3.3-70B [34], are
strongly penalised due to their high emissions. Simi-
larly, we find that low-quality models, like Phi-2 [35] and
Llama-3.2-1B are not exceedingly rewarded.

We emphasize the need for sustainable model choices
in both industrial and academic settings, and recom-
mend the adoption of a standardized approach: measur-
ing CO2eq emission using CodeCarbon or similar tools
on a representative sample of the target corpus, then

calculating a carbon-adjusted score that considers both
translation quality and sustainability.

5. Error Analysis
To complement the quantitative results and better
understand the practical implications of the quality-
sustainability trade-off, we conduct a manual error anal-
ysis on the translations generated by four representative
models: our fine-tuned version of Gemma-3-4B, and the
baseline instruction-tuned Gemma-3-27B, Llama-3.2-3B
and Llama-3.3-70B.

Annotation Process. We conducted our error analysis
following the MQM framework [36], with two annota-
tors who were native speakers of the target language,
proficient in English, and with expertise in translation
studies. The annotators applied a set of MQM categories:
accuracy, fluency, style, locale conventions, and verity,
along with their respective subcategories. Errors were
rated using four severity levels: trivial, minor, major,
and critical, corresponding to weights of 0, 1, 5, and 25,
respectively.

After annotating 10% of the dataset, inter-annotator
agreement (IAA) was calculated to ensure the reliability
of the annotations. The initial agreement, measured with
Cohen’s Kappa, was equal to 𝐾 = 0.28, due to disagree-
ments primarily on the severity levels to assign, rather
than the identification of the error categories themselves.
Following a collaborative resolution process, we refined
the annotation guidelines and calculated agreement on
the final annotations, reaching a Cohen’s Kappa equal
to 𝐾 = 0.53. The annotators proceeded separately and
annotated the translations generated by two models each.

Annotation Results. The results, displayed in Table 4
indicate that Gemma-3-27B, the largest model in the
Gemma family, produced the fewest overall errors, with
only one major error and 8 minor ones. In the con-
text of our study, minor errors were defined as those
that do not significantly alter the meaning expressed by
the source text. Interestingly, we find that Gemma-3-
4B demonstrates comparable performance to the much



Table 3
Comparison of translation quality and CO2eq emissions per inference for various multilingual models on the EN–IT test set.
Models are sorted and ranked by CAQS, where higher CAQS values indicate better effciency.

Model Params (B) BLEU chrF COMET CO2eq (g) CAQS Rank

Gemma-3-4B 4.0 50.0 72.0 94.0 0.028 68.08 1
Magistral-Small 7.0 48.6 70.2 92.7 0.053 63.41 2
Llama-3.2-3B 3.0 37.4 62.6 90.0 0.019 60.97 3
Gemma-3-27B 27.0 49.3 72.8 93.9 0.112 57.42 4
Llama-3.3-70B 70.0 49.5 71.3 93.6 0.115 56.78 5
Llama-3.2-1B 1.0 19.8 46.0 76.5 0.005 46.96 6
Phi-2 2.7 6.8 32.1 49.5 0.015 28.60 7
Qwen-3B 3.0 40.3 65.2 92.4 0.503 24.12 8

Table 4
Error severity distribution across models. The final score rep-
resents the weighted sum of all errors.

Model Critical Major Minor Score

Gemma-3-27B 0 1 8 13
Llama-3.3-70B 0 3 29 44
Gemma-3-4B 0 4 29 49
Llama-3.2-3B 1 28 56 221

larger and environmentally demanding model, Llama-3.3-
70B. In terms of weighted scores, both models show simi-
lar results, with very few major errors and a comparable
number of minor ones. The smallest Llama checkpoint
presents a very high number of both major and minor
errors, when compared to the Gemma-3-4B model. The
findings may suggest that Llama-3’s architecture is sub-
optimal for translation tasks across model sizes, given
that Gemma-3-4B matches the performance of its largest
checkpoint. However, the results should be interpreted
with caution, as our evaluation was limited to a small
test set and a single language pair.

In terms of error category distribution increasing pa-
rameter size leads to an overall performance improve-
ment, as seen in Table 5. This trend is particularly evident
within the Gemma models, where the jump from 4B to
27B parameters results in a significant drop in errors
across all categories. In contrast, Llama-3.2 models ex-
hibit a less linear improvement, suggesting diminishing
returns from scaling model size. This observation, how-
ever, is limited by the fact that only the smallest Gemma
model was LoRA-adapted, while the LLaMA models were
evaluated in their original form. A more rigorous com-
parison, involving both original and adapted versions
across model sizes, is left for future work.

When comparing Gemma-3-4B and Llama-3.3-70B, we
find that most of the errors in the Gemma model are con-
centrated in surface-level issues, especially in spelling
diacritics. These errors, however, do not compromise

the overall understandability of the output. In contrast,
Llama-3.3-70B displays fewer fluency issues but a higher
number of style-related errors, including two rated as
major. These style errors typically result in translations
that sounds unnatural or awkward for a target-language
speaker, thereby reducing the overall quality of the trans-
lation.

6. Conclusions
In this study, we investigated the potential of SLMs as
sustainable alternatives to LLMs, for MT tasks focusing
on the EN-IT language pair. Our results demonstrate
that parameter-efficient fine-tuning of SLMs can achieve
competitive translation quality while dramatically reduc-
ing environmental impact. The fine-tuned Gemma-3-4B
model achieved performance comparable to GPT-4o and
outperformed GPT-4o-mini across all metrics, while con-
suming approximately 15 times less energy per inference.

We complement these results with a MQM human eval-
uation across a set of representative models, confirming
that Gemma-3-4B performed comparably to the much
larger Llama-3.3-70B, producing only minor fluency and
spelling errors.

We also highlighted that the relationship between
model size and carbon emissions is non-linear and highly
dependent on architectural choices, emphasizing the
need for accurate measurements of carbon emissions.

Given the non-linear relation between model size
and environmental impact, we introduced the CAQS, a
novel metric specifically designed to facilitate sustainable
model selection by integrating translation quality and
carbon emissions. CAQS includes a sensitivity param-
eter that allows users to adjust how strongly quality is
penalized by the model’s carbon footprint. According to
this metric, Gemma-3-4B and Magistral-Small emerged
as the most efficient models in our study, offering optimal
trade-offs between sustainability and translation quality.



Table 5
MQM error category breakdown per 100 segments for each model.

Model Accuracy Fluency Style Others Total

Gemma-3-4B 10 17 6 0 33
Gemma-3-27B 7 1 1 0 9
Llama-3.2-3B 40 16 29 0 85
Llama-3.3-70B 8 9 15 0 32

7. Limitations
In light of practical constraints related to time and re-
sources, the main limitations of our study lie in the rela-
tively small sample of segments and the domain-specific
nature of the OpenSubtitles corpus, used for both train-
ing and inference. For this reason, we highlight that
our evaluation results may not be reproducible in other
domains.

As our evaluation focuses on a relatively high-resource
language pair (EN-IT), our findings may not be applica-
ble for distant or low-resource pairs. Finally, our carbon
emission measurements are specific to the computational
infrastructure used (NVIDIA A100 GPUs, EU electric-
ity grid). Results may differ when deploying models on
different hardware configurations, cloud providers, or
geographical regions.
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