
Crossword Space: Latent Manifold Learning for
Italian Crosswords and Beyond
Cristiano Ciaccio1, Gabriele Sarti2, Alessio Miaschi1 and Felice Dell’Orletta1

1ItaliaNLP Lab, Istituto di Linguistica Computazionale “A. Zampolli” (CNR-ILC), Pisa, Italy
2Center for Language and Cognition (CLCG), University of Groningen, The Netherlands

Abstract
Answering crossword puzzle clues presents a challenging retrieval task that requires matching linguistically rich and often
ambiguous clues with appropriate solutions. While traditional retrieval-based strategies can commonly be used to address this
issue, wordplays and other lateral thinking strategies limit the effectiveness of conventional lexical and semantic approaches.
In this work, we address the clue answering task as an information retrieval problem exploiting the potential of encoder-based
Transformer models to learn a shared latent space between clues and solutions. In particular, we propose for the first time
a collection of siamese and asymmetric dual encoder architectures trained to capture the complex properties and relation
characterizing crossword clues and their solutions for the Italian language. After comparing various architectures for this
task, we show that the strong retrieval capabilities of these systems extend to neologisms and dictionary terms, suggesting
their potential use in linguistic analyses beyond the scope of language games.
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1. Introduction and Background
Language games have emerged as compelling bench-
marks for evaluating the reasoning capabilities of lan-
guage models (LMs), offering structured challenges that
require diverse cognitive skills including wordplay com-
prehension, lateral thinking, and cultural knowledge in-
tegration [2, 3, 4, 5]. Among popular language games,
crossword puzzles stand out as particularly challenging,
demanding not only linguistic competence but also ex-
tensive world knowledge, cultural awareness, and lateral
thinking skills [6, 7, 8, 9]. While recent advances in Large
Language Models have shown impressive performance
on many natural language understanding tasks, their
effectiveness on language games remains constrained
by fundamental limitations in accessing linguistic and
culturally-relevant knowledge, in particular for less-
resourced non-English languages [5].

Before the advent of modern languagemodels, most ap-
proaches to crossword solving relied on retrieval-based
methods and shallow lexical and semantic features to
identify relevant information [10, 11]. For example,
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Figure 1: An example of symmetric-style crossword puzzle.
The grid was populated using clues taken from the test set. The
correct solution, which was autonomously found leveraging
our system, is in Appendix A.

[12] proposed a retrieval model that exploited lexical
resources and similarity metrics to match clues to can-
didate answers in Italian. In a subsequent work, [13]
introduced SACRY, a system that incorporated syntac-
tic information and ranking strategies to improve clue-
answer matching. Importantly, fill-in-the-blank clues
and clues representing anagrams or linguistic games are
often omitted. While these traditional retrieval systems
typically relied on surface-level features - such as lexical
overlap, part-of-speech patterns, and predefined simi-
larity measures — the identification of viable crossword
solutions often involves more nuanced interpretations,
including the use of wordplay, homophones and other
unusual elements. For example, the clue “Producono con
procedimenti lenti” plays on the polysemanticity of lenti
(in Italian, either “slow” masc. plur., or “lenses”), and
could have ottici (opticians) as a valid solution. These
kinds of subtle connections hinder the viability of tra-
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ditional retrieval systems in the context of crossword
games.

Recent advances in cross-modal learning, particularly
in vision-language models such as CLIP [14, 15], have
demonstrated the effectiveness of dual encoder architec-
tures in learning shared representations across different
modalities. These approaches typically employ separate
encoders for each modality, training them to project in-
puts into a common latent space where semantically re-
lated items cluster together. Inspired by these successes,
we propose adapting this paradigm to the domain of lan-
guage games, specifically focusing on the relationship
between crossword clues and their solutions1.

In this work, we evaluate several dual encoder archi-
tectures designed to learn effective representations for
crossword puzzle elements (see Figure 1 for an example
of a crossword puzzle). Our approaches treat clues and
solutions as distinct ”modalities” that can be embedded
to a shared latent space. The clue encoder must under-
stand various forms of wordplay, cultural references, and
linguistic devices, while the solution encoder must rep-
resent semantic, lexical and grammatical characteristics
of the words. By training these encoders jointly with a
contrastive objective, we create a retrieval system specif-
ically optimized for the complexities of crossword puz-
zles. Our contributions are threefold: (1) We formalize
the problem of specialized retrieval for language games
and demonstrate the limitations of generic retrieval ap-
proaches in this domain; (2) We introduce and evaluate
multiple dual encoder architectures tailored for Italian
crossword puzzles, exploring different design choices
and training strategies; (3) We demonstrate the utility of
our learned representations for solution ranking and ex-
plore their generalization capabilities to neologisms. Our
experimental results show that domain-specific models
significantly outperform generic alternatives, suggesting
that specialized retrieval mechanisms are essential for
effectively ranking plausible alternatives in this domain.

2. Our Approach
Our approach formalizes crossword’s clues answering as
an information retrieval problem. Given a clue 𝑐𝑖 from
the set𝒞 = {𝑐1, … , 𝑐𝑛} and a matching solution 𝑠𝑖 from the
finite set of all available solution words 𝒮 = {𝑠1, … , 𝑠𝑛},
our system scores the similarity of a subset of candi-
dates 𝒮 ∗ ∈ 𝒮 with 𝑐𝑖 to produce a similarity-based rank-
ing. Inspired by CLIP’s approach [14], we opted for a
a dual encoder architecture [16], composed of two pre-
trained transformers encoders [17] —referred to as tow-
ers— which are fine-tuned on clue-solution pairs with a

1Code, models and datasets are released at: https://github.com/
snizio/Crossword-Space.

contrastive learning objective to learn a joint embedding
space between clues and words.

In the following sections, we describe in detail the ar-
chitecture of our model (Section 2.1), the datasets used
for the experiments (Section 2.2), the encoder models
employed (Section 2.3), the experimental setting (Sec-
tion 2.4), the evaluation strategy adopted to assess the
system’s performance (Section 2.5).

2.1. Model’s Architecture
To explore the effectiveness of our approach, we experi-
ment with different encoder-based models for initializ-
ing the encoder towers, each fine-tuned and tested on a
dataset of Italian crossword clues. As shown by Dong
et al. [18], to effectively learn a shared parameter space
using a dual encoder, there are two main architectural op-
tions: (a) the Siamese Dual Encoder (SDE) and (b) the
Asymmetric Dual Encoder (ADE) with a shared linear
projection. Both consist of two pre-trained Transformers
encoders, in our case, a clue-encoder 𝑓1 and solution-
encoder 𝑓2, trained to produce representations c𝑖 = 𝑓1(𝑐𝑖)
and s𝑖 = 𝑓2(𝑠𝑖) by average pooling, where both c𝑖, s𝑖 ∈ ℝ𝑚.
These are linearly projected into a shared feature space
𝐶 ∈ ℝ𝑛 in order tomaximize the cosine similarity between
positive pairs (c𝑖, s+𝑖 ) and minimize it for negative ones
(c𝑖, s−𝑖 ). The distinction between SDE and ADE lies in
the parameter sharing: while in SDE the two encoders 𝑓1
and 𝑓2 have tied parameters (𝜃𝑓 1 = 𝜃𝑓 2), in ADE the two
encoder towers have untied parameters (𝜃𝑓 1 ≠ 𝜃𝑓 2) but
share a final layer norm and the linear transformation
𝑇 ∶ ℝ𝑚 −→ ℝ𝑛, which is essential to achieve an effec-
tively shared space. Having separate encoders can be
advantageous when modeling different modalities and
distributions since it allows the two encoders to special-
ize independently on the specific nuances of the input
types they process. To assess which of the two architec-
tures is better suited for our task, we conduct preliminary
experiments on both and compare their results in Section
3.1.

2.2. Dataset
For training our dual encoders, we employ the ItaCW
crossword dataset [19], containing 125k unique
definition-word pairs. We expand this collection with
additional clue-solution pairs found on the web, and
deduplicate the resulting set of entries, obtaining a total
of 416,407 samples.

In addition to the original crossword dataset, to evalu-
ate the out-of-distribution performances of our system
we also consider word–definition pairs automatically ex-
tracted from the Italian Wiktionary, neologisms from the
ONLI (Osservatorio Neologico della Lingua Italiana2) and
2https://www.iliesi.cnr.it/ONLI/.
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Figure 2: The two architectures tested: (a) Siamese Dual En-
coder (SDE), (b) Asymmetric Dual Encoder with shared linear
projection (ADE). Final clue (C) and solution (S) embeddings
are projected to a shared latent space in both architectures.
Blue modules are shared.

a set of 100 recently lexicalized neologisms [20]. Since
some word-definitions pairs maintain the same infer-
ential relation that occurs for most clue-solution pairs
(excluding nuanced and specific crossword cases), aug-
menting the dataset with these specific resources allows
us to assess the performance variations and generaliza-
tion to different linguistic settings that exhibit the same
input-output structure of crosswords, offering a natural
extension to the main dataset. Specifically, the usage of
dictionary data is twofold: (a) to understand whether
augmenting the train set with word-definition pairs can
enhance downstream performance on the crossword data;
(b) to assess the extent to which models trained on word-
clue pairs can be used to answer dictionary definitions.
On the other hand, the ONLI and the 100-neologisms
dataset will be used to test the robustness and general-
ization of our systems, therefore simulating a scenario
where a novel term appears in a crossword, as is often
the case. The ONLI covers a wide range of neologisms
appearing on national and local newspapers, thus strictly
related to the Italian culture, including newly coined
or derived formations, internationalisms, foreignerisms,
technical terms and some authorial neologisms until 2019;
while the 100-neologism dataset consists of lemmas ex-
tracted from various online dictionaries (lexicalized after
2020) that focus mostly on politics, COVID-19 social dy-
namics and contain several foreignerisms.

2.3. Models
As backbone models, we choose several pre-trained
encoders available for the Italian language, vary-
ing in parameter size and pre-training approaches.
Specifically, we picked the encoders of IT5-small
(35M) and IT5-base (110M) from the IT5 family

[21] of encoder-decoders pre-trained on the Italian
cleaned split of the MC4 [22]; Italian-ModernBERT-
base3 (135M) and Italian-ModernBERT-base-embed-
mmarco-triplet4 (135M), both based on the Modern-
BERT architecture [23] and pretrained on Italian with
the latter being finetuned in a sentence-transformer
fashion [24] on the mMARCO dataset [25]; lastly,
we employed paraphrase-multilingual-mpnet-base-
v25 [26] (278M), a multilingual model based on XLM-
RoBERTa already tuned as a sentence embedder.

2.4. Experimental setting
We begin by comparing ADE and SDE architectures to
assess the optimal approach for our clues answering task.
Subsequently, each model is trained across two dataset
configurations: the first one consists of using only a sub-
set of the crossword dataset as the training set, the second
one introduces also a split of the ItalianWiktionary in the
training data. On the other hand, the evaluation is always
performed on an held-out test set composed of cross-
words clues, dictionary 6, ONLI and the 100-neologisms
definitions. After merging all the data sources we split
the resulting dataset into 90% train, 5% validation and 5%
test (see Table 1).

We train our SDE and ADE architectures to minimize
the symmetric InfoNCE loss used in CLIP [14] with in-
batch negatives. During training, for each step, we mine
for (𝐵 − 1) ∗ 𝑟 hard negatives that have the highest simi-
larity to the positive target, where 𝐵 is the batch size and
𝑟 ∈ [0, 1] is a fraction that determines how many of the
hardest negatives are kept [27]. Formally, let c𝑖 ∈ ℝ𝑚 be
the normalized embedding of the 𝑖-th clue, and s𝑗 ∈ ℝ𝑚
the normalized embedding of the 𝑗-th solution word. Let
𝜏 = exp(𝑡) be a learnable temperature parameter, and let
𝒩𝑖 denote the indices of the top-𝑘 hardest negatives. The
clue-to-solution contrastive loss is defined as ℒ𝑐→𝑠:

1
𝐵

𝐵
∑
𝑖=1

− log
exp (𝜏 ⋅ cos(c𝑖, s𝑖))

exp (𝜏 ⋅ cos(c𝑖, s𝑖)) + ∑
𝑗∈𝒩𝑖

exp (𝜏 ⋅ cos(c𝑖, s𝑗))

Similarly, the solution-to-clue loss is ℒ𝑠→𝑐:

1
𝐵

𝐵
∑
𝑖=1

− log
exp (𝜏 ⋅ cos(s𝑖, c𝑖))

exp (𝜏 ⋅ cos(s𝑖, c𝑖)) + ∑
𝑗∈𝒩𝑖

exp (𝜏 ⋅ cos(s𝑖, c𝑗))

The final symmetric contrastive loss is the average of the
two losses:

ℒ = 1
2
(ℒ𝑐→𝑠 +ℒ𝑠→𝑐)

3DeepMount00/Italian-ModernBERT-base.
4nickprock/Italian-ModernBERT-base-embed-mmarco-triplet.
5sentence-transformers/paraphrase-multilingual-mpnet-base-v2.
6When augmenting the dataset with dictionary definitions, all in-
flected forms are dropped.
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Train Val. Test

Crosswords (Cross.) 374,713 20,853 20,841
Dictionary (Dict.) 78,103 4,303 4,316
ONLI - - 2,986
Neologisms (Neo.) - - 100

Tot. 452816 25156 28213

Table 1
Train, validation and test split sizes for the tested datasets.

The training setup is the same across all models, ar-
chitectures and dataset configurations. Each model is
trained for a maximum of six epochs with a batch size 𝐵
of 256 using AdamW [28] with a linearly decaying learn-
ing rate. The hard negatives fraction decays linearly dur-
ing training from 0.8 to 0.05 (for detailed hyperparameter
see Appendix B).

Before the test phase, all available solution words 𝒮
are encoded into their relative embeddings, normalized
and stored into a vector database. During inference, for a
normalized clue embedding c𝑖, the retrieval is performed
leveraging the FAISS library [29] by inner product on the
stored embedding matrix E|𝒮 |×𝑚, where |𝒮 | = 106, 988
is the cardinality of the finite set of available solution
words and 𝑚 is the embeddings dimension.

Baselines In order to further assess the performance
of our models, we include and compare several base-
lines based on two main approaches: (a) clues to clues
(c2c), where, given an input clue, the most similar clues
and their corresponding solutions are retrieved from
the training set, as commonly done in the crossword
solving literature [13, 30, 31]; and (b) clues to solu-
tions (c2s), where solutions are retrieved by directly
comparing the given clue against the set of all possible
solutions. For c2c we computed the similarity scores
between clues using (1) Levenshtein distance (c2c-lev),
(2) BM25 (c2c-BM25) and (3) the cosine similarities be-
tween clues representations obtained with paraphrase-
multilingual-mpnet-base-v2 (c2c-MPNet) as a stand-
alone sentence embedder and without any finetuning.
For the c2s baseline, we rank the answers by cosine sim-
ilarity between the clue and all solutions using, as be-
fore mentioned, the paraphrase-multilingual-mpnet-
base-v2 (c2s-MPNet). To ensure a fair comparison be-
tweenmodels and baselines, the c2c retrieval is conducted
against the clues in the training set, augmented with dic-
tionary definitions.

2.5. Evaluation
To evaluate the retrieval performance of our trained mod-
els, we adopt the following standard metrics:

Accuracy@1/10/100/1000 is the accuracy in retrieving

Arch. Accuracy@ MRR
1 10 100 1000

Cross. ADE .33 .63 .80 .90 .43
SDE .20 .58 .80 .91 .33

Dict. ADE .07 .22 .42 .65 .12
SDE .10 .28 .47 .67 .16

ONLI ADE .07 .21 .45 .70 .12
SDE .13 .32 .54 .74 .20

Neo. ADE .05 .11 .25 .63 .07
SDE .09 .22 .39 .64 .14

Table 2
Test results for ADE and SDE architectures across the four
tested domains. Top scores per dataset are marked in bold.

the correct solution word given the corresponding clue,
considering the top 1/10/100/1000 most similar words
retrieved by our system as valid.

Mean Reciprocal Rank (MRR) represents how well a
system ranks the first relevant result by averaging the re-
ciprocal ranks of the first relevant item across all queries.

To simulate a more realistic crossword puzzle solving
scenario, we also report metrics for candidate words re-
trieved from the filtered set 𝑆ℓ ⊆ 𝑆 containing only words
with the same character length ℓ as the target word 𝑠𝑡𝑎𝑟𝑔𝑒𝑡,
formally 𝑆ℓ = {𝑠 ∈ 𝑆 ∣ len(𝑠) = ℓ}. We append an asterisk
when reporting metrics that include this filtering process
(e.g. Acc@10* or MRR*).

3. Results
We begin by comparing the two architectures under
evaluation, SDE and ADE, and then report the perfor-
mance of all tested models for all datasets using the best-
performing architecture.

3.1. Siamese vs. Asymmetric Encoders
Table 2 reports our test results for the paraphrase-
multilingual-mpnet-base-v2 model, the largest we
trained, which guided our choice between the siamese
and asymmetric architecture variants. Interestingly, the
asymmetric architecture shows a substantial gain in
performance only for crossword clues and especially
in ranking terms (Acc@1 +13%, MRR +10%), while being
outperformed by SDE in all other linguistic settings, al-
though with a narrower gap. We hypothesize that due
to the peculiar inference links that relate clues and tar-
get words, an asymmetric architecture could be better
at enriching representations with input/output nuances
separately, rather than jointly as in ADE models. Indeed,
many puzzles feature clues with wordplay intended to



Accuracy@ MRR MRR∗

1 1* 10 10* 100 100* 1000 1000*

Cross.

c2c-lev .20 .30 .39 .50 .53 .63 .63 .74 .27 .37
c2c-BM25 .25 .38 .49 .60 .63 .69 .69 .76 .33 .46

c2c-MPNet .27 .39 .45 .59 .61 .73 .74 .84 .33 .46
c2s-MPNet .003 .03 .02 .10 .09 .23 .18 .50 .01 .05

IT5-small .08+.00 .26+.01 .29+.02 .57+.01 .57+.03 .81+.01 .81+.02 .95+.00 .15+.01 .36+.01
IT5-base .15+.01 .41+.01 .48+.02 .74+.01 .75+.02 .91+.00 .90+.01 .98+.00 .26+.01 .52+.01

ModernSBert .25+.01 .45+.01 .52+.02 .72+.01 .73+.02 .87+.01 .86+.02 .96+.01 .34+.01 .55+.01
ModernBert .09+.01 .27+.01 .30+.04 .57+.03 .58+.04 .78+.05 .81+.03 .81+.15 .16+.02 .37+.02
MPNet-base .33−.01 .54−.00 .63+.00 .80+.00 .80+.01 .90+.01 .90+.01 .97+.00 .43−.01 .64−.00

Dict.

c2c-lev .04 .06 .07 .10 .10 .17 .16 .30 .05 .07
c2c-BM25 .05 .09 .10 .17 .18 .27 .26 .39 .07 .12

c2c-MPNet .06 .12 .13 .25 .25 .39 .38 .54 .08 .16
c2s-MPNet .05 .13 .15 .30 .30 .46 .45 .67 .08 .19

IT5-small .05+.06 .14+.10 .15+.12 .35+.14 .33+.15 .59+.13 .58+.15 .85+.08 .08+.08 .21+.12
IT5-base .09+.08 .24+.11 .27+.13 .49+.13 .48+.14 .71+.11 .70+.13 .91+.05 .15+.10 .33+.12

ModernSBert .04+.07 .13+.15 .14+.18 .32+.23 .31+.25 .57+.20 .56+.22 .83+.12 .07+.11 .19+.18
ModernBert .03+.07 .12+.12 .13+.13 .32+.18 .31+.19 .53+.20 .56+.19 .56+.37 .07+.09 .19+.14
MPNet-base .07+.11 .19+.17 .22+.19 .43+.20 .42+.21 .66+.17 .65+.18 .87+.09 .12+.13 .27+.18

ONLI

c2c-lev .01 .02 .02 .03 .03 .04 .03 .07 .01 .02
c2c-BM25 .01 .02 .02 .04 .04 .07 .06 .09 .01 .03

c2c-MPNet .04 .07 .07 0.1 .09 .12 .11 .13 .05 .08
c2s-MPNet .11 .30 .30 .52 .49 .68 .65 .84 .18 .38

IT5-small .08+.04 .23+.09 .23+.10 .48+.11 .44+.11 .71+.09 .67+.11 .91+.04 .13+.06 .31+.10
IT5-base .16+.07 .41+.10 .42+.10 .68+.08 .65+.09 .85+.05 .83+.07 .96+.02 .25+.08 .50+.09

ModernSBert .05+.03 .18+.10 .16+.09 .41+.14 .36+.14 .69+.10 .64+.11 .90+.04 .09+.05 .26+.11
ModernBert .06+.02 .20+.07 .18+.07 .43+.09 .40+.08 .63+.11 .64+.06 .64+.27 .10+.04 .28+.07
MPNet-base .07+.05 .24+.12 .21+.14 .50+.15 .45+.16 .74+.11 .70+.12 .92+.04 .12+.08 .33+.13

Neo.

c2c-lev .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
c2c-BM25 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01

c2c-MPNet .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
c2s-MPNet .15 .31 .29 .50 .47 .67 .67 .85 .20 .36
IT5-small .03+.01 .12+.03 .09+.06 .23+.16 .24+.13 .58+.08 .58+.08 .90+.04 .05+.02 .17+.06
IT5-base .09+.02 .24+.07 .19+.17 .47+.09 .48+.06 .74+.08 .71+.08 .95+.01 .13+.06 .32+.09

ModernSBert .03+.03 .10+.05 .08+.06 .26+.15 .24+.16 .56+.14 .54+.14 .84+.07 .05+.04 .16+.08
ModernBert .01+.05 .13+.03 .08+.10 .31+.12 .31+.10 .54+.12 .54+.11 .54+.35 .05+.06 .19+.06
MPNet-base .05+.04 .16+.12 .11+.14 .30+.30 .25+.34 .62+.22 .63+.19 .94+.00 .07+.07 .21+.18

Table 3
Model performances across test sets for each dataset, with bold values indicating best performances within each dataset.
Footer values show the difference in performance after augmenting the original crosswords-only training set with dictionary
definitions (Dict.).

be taken metaphorically or in other non-literal senses.
For example, a correct answer for the clue “half a dance”
might be can (half of the dance named cancan). In this
setting, an encoder specialized in enriching the represen-
tation of the clue with dance names might be necessary
to achieve good performances. On the other hand, for
dictionary-like entries, there is no sufficient need to de-
velop uniquely independent representations (as shown by
the ADE performance drop) since word-definition pairs
are typically symmetric in meaning and structure. In
these settings, the same encoder can effectively capture
both sides of the pair, benefiting from shared parameters
that reinforce semantic alignment. Given that our pri-
mary interest in this work lies in crosswords, we adopt
the ADE architecture with a shared linear projection for
subsequent evaluations.

3.2. Main results
Table 3 shows the results of all models across the various
test sets:

Crosswords MPNet-base, ModernSBert and IT5-base
strongly outperform all baselines, especially at higher
candidate sizes and when applying length filtering (“*”).
Overall, the MPNet-base yields the best result, suggest-
ing that model size has a positive effect on improving
task performance. In terms of MRR, ModernSBert is the
second-best performer, substantially outperforming its
only pre-trained counterpart, ModernBert, underscoring
the additional value of using models that have already
undergone a sentence finetuning phase for boosting re-
trieval performance. All baselines leveraging the c2c ap-
proach are superior when confronted with IT5-small and
ModernBert, especially in terms of MRR. Interestingly,
incorporating dictionary data into the training set yields
only moderate overall gains and does not significantly



Query c2c-BM25 c2c-MPNet IT5-base MPNet-base Target

Cross.

Il numero di chi co-
manda

direzione, autorità dieci, fili numero romano, nu-
mero

uno, centouno uno

____ urrà! laura, liv incantesimo, tocca-
ferro

pelu, miki hip, ip hip

Lido senza pari arenile, ostia bti, cv vl, dl dd, ld ld
Colore monosillabo tinta, si toni, pallore indaco, blu si, ma blu

Dict. infiammazione acuta o
cronica di un nervo

epididimite, endo-
cardite

linfadenopatia, lin-
fadenopatico

tendinite, flogosi nevrite, spondilite nevrite

navigare seguendo la
linea di costa

cabotare, piaggiare cabotare, litoranea navigare,
costeggiare

costeggiare, circum-
navigare

costeggiare

ONLI Terrorismo di matrice
anarchica.

diagonalizzabile, co-
nio

eversivo, terrorista anarcoterrorismo,
anarcoinsurrezional-
ismo

fascismo, hitlerismo anarcoterrorismo

Il potere delle mafie. stampa,
plenipotenza

cupola, dia malaffare,
mafiocrazia

direttorio, establish-
ment

mafiocrazia

Neos. Chi pratica hacking con
lo scopo di divulgare
slogan nazisti.

sport, autostop hacker, pirateria nazi-hacker, hacker cyberpirata, sabota-
tore

nazi-hacker,

Lavoro da remoto,
svolto in prossimità
della propria abitazione

rincasare, vicina domestici, computer telelavoro, smart-
working

masserizia, trasferta nearworking

Table 4
Some examples of retrieved answers across baselines, models and test sets.

impact the results, further emphasizing that definitions
and crossword clues originate from different linguistic
distributions.

Dictionary All models, and especially baselines,
severely drop in performance when dealing with dic-
tionary data. Furthermore, the rank changes: IT5-base
obtains higher results than the multilingual MPNet-base,
despite having half of the parameters. As expected, en-
hancing the training set with dictionary samples yields
substantial gains across all models; especially, the MPNet-
base increases results-wise more than the IT5-base, re-
sulting in similar scores for both models.

ONLI For ONLI neologisms, all c2c baselines con-
tinue to decline while c2s-MPNet gains significantly w.r.t.
crossword clues and dictionary definitions. IT5-base
achieves the best results, with a substantial gap from the
MPNet-base. As in the dictionary setting, augmenting the
dataset with dictionary definitions yields improvements,
although more moderate. ONLI neologisms are retrieved
better than dictionary words, even when augmenting
the dataset. One hypothesis for this phenomenon is that
crossword clues are more aligned with the definitions of
neologisms, as they may reflect similar linguistic strate-
gies. Both crossword clues, particularly those involving
wordplay, and journalistic neologism definitions often
rely on compositionality. For example, clues such as “half
a dance” or “prefix meaning new” require the decomposi-
tion and reinterpretation of word parts, similarly to many
neologisms in ONLI are defined through transparent com-
pounds or affix-based constructions (e.g., mafiocracy =
mafia + -cracy). This shared reliance on compositionality

may partially explain why models trained on crossword
clues generalize better to ONLI neologisms than to stan-
dard dictionary definitions, which are often more rigid
and semantically grounded.

Neos. Models perform poorly in this setting. However,
they still widely outperform all c2c baselines, which are
almost fully incapable of retrieving correct answers. In-
terestingly, the simple c2s-MPNet approach yields strong
results, achieving top Acc@1 and Acc@1∗ scores. Over-
all, IT5-base achieves the best results, beating the c2s-
baseline from Acc@10, followed by the multilingual
MPNet-base. As for ONLI and Dict., all models bene-
fit importantly from training on dictionary definitions
and, especially, the MPNet-base in this configuration be-
comes the top performer in terms of Acc@10∗, Acc@100,
Acc@100∗ and Acc@1000.

3.2.1. Discussion

Overall, we observe an interesting trend concerning base-
lines: while all c2c (clues to clues) approaches perform
reasonably well on crosswords, their performance dras-
tically drops when dealing with dictionary terms and
neologisms. On the other hand, the c2s-MPNet base-
line, which directly confronts clues and solutions dur-
ing retrieval, exhibits an inverse trend, performing bet-
ter with definition-like clues than with crossword clues.
These results further corroborate the hypothesis that
clues and definitions have a different relation to target
words: words and definitions are more semantically
aligned, from a distributional point of view, than
crossword clues and solutions. Furthermore, the ex-
tremely low performance of c2c-baselines on neologisms



Figure 3: An autonomously solved crossword puzzle. Clues taken from the test set were answered by using our system to
retrieve the fifty closest answers, and the complete grid was filled using the Z3 SAT solver.

confirms that clues-to-clues mappings are insufficient
to handle lexical innovation in crossword puzzles. This
supports our initial motivation for a joint latent space
that leverages rich distributed representations, enabling
the modeling of unseen clues and solutions for the task
of crossword retrieval. Finally, the majority of our
trained systems achieved better results than base-
lines on crossword clues with the biggest and multi-
lingual model, MPNet-base, achieving the best results,
closely followed by the IT5-base. For neologisms in par-
ticular, the better performances of the monolingual IT5-
base encoder despite its smaller parameter count sug-
gest that language-specific training might benefit
retrieval in domains heavily influenced by culture
and language-specific lexical innovation dynamics.

4. Analysis and Applications
This section provides further explorations in applications
and properties of our crossword embeddings systems.

Examples Analysis Table 4 reports some examples
of the Top2 retrieved answers across baselines, models
and test sets. For this purpose, we manually selected
cases showing the limitations of traditional baselines,
e.g. crossword clues carrying a non-literal meaning. For
example, the cryptic-style clue ”Lido senza pari” (transl.
Beach without even) requires interpreting even as refer-
ring to the characters in even positions inside the word
lido. Baselines do not capture this meaning nuance, while
some of our models arrive at the correct solution, de-
spite the well-known problem of character awareness in
character-blind models [32, 33]. Another interesting case
involves neologisms: baselines are unable to retrieve the
correct answers since they represent a fringe minority
in the available pool of definitions and solutions. On the
other hand, our models, especially the monolingual IT5,
show signs of generalization and were able to retrieve
the correct answers despite not being trained on them.

Automated Crossword Solving Despite not being
the main focus of this article, we tried to leverage our
system to automatically solve crossword puzzles as a con-
crete application of clues answeringcrossword. Figures
1 and 3 show an example of a crossword puzzle, built
entirely from clues in the test sets, automatically filled
using the Z3 SMT (Satisfiability Modulo Theories) solver
[34]7, leveraging candidates retrieved by the MPNet-base
model. Specifically, by treating crossword puzzles as a
satisfiability problem, we can define a set of first-order
logical constraints that must be satisfied across all vari-
ables (grid cells) to find valid solutions: each clue cor-
responds to a sequence of grid variables constrained to
match one of its candidate answers, forming a disjunctive
(OR) group. These candidate-level constraints are then
combined conjunctively (AND) across all clues. Addi-
tionally, for intersecting cells, equality constraints are
enforced to ensure character consistency between over-
lapping horizontal and vertical words. The final formula,
composed of these conjunctive and disjunctive logical
statements, is passed to the solver, which searches for a
globally consistent solution that satisfies all constraints
simultaneously. Despite the complexity of this approach,
which requires that each candidate set contains the cor-
rect solution, our biggest model, MPNet-base, was able
to solve entirely some small-medium grids using a can-
didate size 10 ≤ 𝑘 ≤ 50, confirming the effectiveness of
our system. We posit that a strategy iterating Z3 solving
attempts over progressively larger candidate sizes could
provide a strong baseline for crossword solving systems
with a given computational budget, and we leave such
assessment to future work.

5. Conclusion and Future Work
In this work, we introduced and evaluated dual encoder
architectures for retrieving solutions of Italian crossword
clues by learning a shared latent space between clues
and solutions. Our experiments demonstrated that the

7We partially modified the implementation found at https://github.
com/pncnmnp/Crossword-Solver.

https://github.com/pncnmnp/Crossword-Solver
https://github.com/pncnmnp/Crossword-Solver


Asymmetric Dual Encoder (ADE) architecture, with its
independent encoders for clues and solutions, outper-
formed the Siamese Dual Encoder (SDE) in handling the
nuanced and often non-literal relationships characteris-
tic of crossword puzzles. Our results also highlighted
the limitations of traditional retrieval-based approaches
(e.g., clues-to-clues methods), particularly when testing
their generalization towards neologisms’ definitions. In
contrast, our dual encoder-based models, especially the
larger and multilingual MPNet-base and the monolin-
gual IT5-base, exhibited signs of generalization across
diverse linguistic settings, including newly coined terms
and culturally specific references. This underscores the
importance of leveraging rich distributed representations
to model the complex interplay between clues and solu-
tions.

In future work, it could be interesting to explore en-
semble methods that combine traditional information re-
trieval approaches with dual encoder models, including
clues-to-clues retrieval techniques, to leverage their com-
plementary strengths. Training a cross-encoder reranker
on top of retrieved candidate solutions may also prove
beneficial, as it would enable the exploitation of contex-
tual relationships between clues and solutions, an ap-
proach that is standard in retrieval-based systems. More-
over, conducting a detailed linguistic analysis of clues,
examining categories, frequency distributions, and other
properties, could provide deeper insights into their char-
acteristics. Finally, extending the methodology toward
an automatic completion system for crossword puzzle
grids represents a promising direction for supporting full
puzzle solving.
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to produce representations of dimensionality equals to
768. We used the default betas and 𝜖 AdamW parameters.
Table 5 reports the specific hyperparameters used with
each model. Due to limited computational resources, we
did not perform an extensive hyperparamters optimiza-
tion, rather, we relied on the configurations suggested
by the models creators. The maximum token length of
the clues and solutions were set to respectively 64 and 16.
The learnable temperature parameter 𝜏 was initialized to
the equivalent of 0.07 from and clipped as done in CLIP
paper. During batch generation, in order to avoid false
negatives during hard batch mining, each batch cannot
contain the same solution two or more times.

Model lr weight decay

IT5-small 5e-4 1e-3
IT5-base 5e-4 1e-3

ModernBert 2e-5 0.0
ModernSBert 2e-4 1e-3
MPNet-base 2e-4 1e-3

Table 5
Models specific hyperparameters.

During training, we kept track of the model’s perfor-
mance on the validation dataset and we picked the check-
point with lowest validation loss.
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