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Abstract

Understanding whether large language models (LLMs) capture human-like semantic associations remains an open challenge.
This study investigates semantic priming within GPT-40 Mini by analyzing probabilistic responses to psycholinguistically
validated prime-target pairs. Prime-target stimuli were extracted from the Semantic Priming Project database, embedding
target words within masked sentence contexts preceded by semantically related or unrelated primes. Model responses
were quantified using log-probabilities associated with predicted tokens, allowing comparative evaluation of semantic
priming effects. Results reveal that the model’s predictive outputs reflect priming effects when analysis is restricted to fully
reconstructed data, yet these effects diminish significantly under data imputation strategies addressing extensive missingness.
This discrepancy highlights critical issues regarding data preprocessing, tokenization, and the management of missing values
in computational semantic experiments. Implications for future research in cognitive modeling and the refinement of LLM

architectures to better approximate human semantic processing are discussed.
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1. Introduction

Semantic priming, a fundamental phenomenon in psy-
cholinguistics and cognitive neuroscience, provides crit-
ical insights into how the human brain organizes and
retrieves semantic knowledge. It refers to the facilitation
of a target word’s recognition or processing when it is
preceded by a semantically related prime. This effect
was first empirically demonstrated by Meyer and Schvan-
eveldt in 1971 [1] using the lexical decision task where
participants identified words more quickly when pro-
ceeded by related primes (e.g., bread-butter) compared
to unrelated pairs (e.g., guitar-butter). This finding sug-
gested that related concepts in the mental lexicon are
interconnected, enabling more efficient retrieval. Build-
ing on this, Collins and Loftus [2] proposed the spreading
activation model of semantic memory in 1975. Accord-
ing to this model, the mental lexicon is structured as a
network of interconnected nodes representing concepts.
When a prime word is processed, activation spreads
to related nodes, reducing the activation threshold re-
quired to recognize semantically connected targets. This
framework accounts for the graded nature of semantic
priming, where more closely related concepts exhibit
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stronger priming effects. Furthermore, Neely [3] dif-
ferentiated between automatic and controlled semantic
priming processes in 1977. Automatic priming occurs
rapidly and unconsciously at short stimulus onset asyn-
chronies (SOAs), reflecting the passive spread of acti-
vation within the semantic network. In contrast, con-
trolled priming involves conscious, strategic processes
that emerge at longer SOAs, where participants antic-
ipate certain responses based on contextual cues. The
neural correlate of semantic priming was clarified by
with the discovery of the N400 event-related potential
(ERP) component [4]. It is a negative deflection of the
brain electrical activity that peaks approximately 400
ms after the presentation of a semantically incongruent
stimulus. In their study, unexpected sentence endings
elicited larger N400 responses compared to congruent
completions, providing neurophysiological evidence that
semantic priming modulates brain activity during lan-
guage comprehension. Recent work has started to in-
vestigate priming phenomena in large language models,
showing parallels with human language processing. For
structural priming, Michaelov et al. [5] demonstrate that
LLMs exhibit human-like inverse frequency effects and
that prime-target dependencies influence prediction pref-
erences, revealing systematic parallels with production
preferences in humans. Similarly, semantic activation
patterns—akin to classical semantic priming in psycholin-
guistics—have been explored both in humans and LLMs,
highlighting ways in which contextual cues modulate
internal representations. These findings motivate situat-
ing our methodology within this emerging line of work
and clarifying how our approach compares and contrasts
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with prior operationalizations.

Motivations. This foundational framework informs
the present study, which investigates whether similar
semantic priming effects manifest in large language mod-
els (LLMs) like GPT-40. By comparing the probabilistic
output of the model in related and unrelated prime-target
conditions, this research explores whether LLMs exhibit
cognitive-like patterns of semantic association, bridging
computational modelling with traditional psycholinguis-
tic paradigms. The motivation behind this study stems
from a broader interest in cognitive modelling using Al
These systems offer a convenient starting point for mod-
elling and exploring human language processing due to
their architecture and training on vast amounts of linguis-
tic data. A critical question is whether the behaviours
they exhibit are unique to their training processes or if
they mirror transferable cognitive mechanisms inherent
to human language processing. Understanding this could
contribute to the debate of whether LLMs merely reflect
statistical learning or if they approximate the cognitive
structure that governs human semantic memory. Neural
networks like GPT are trained on massive datasets, cap-
turing statistical regularities, co-occurrence patterns and
semantic relationships present in human language. While
these models are not biological in nature, the structured
statistical patterns they learn often mimic human-like
associations. This raises intriguing questions: do these
models, through exposure to language data, develop se-
mantic networks akin to those observed in the human
brain? And if so, can they serve as valid proxies for study-
ing cognitive processes like semantic priming? Beyond
theoretical interests, there are significant practical ap-
plications to this line of inquiry. These systems could
be employed to predict and model human behaviours
in various linguistic tasks, providing a new tool for psy-
cholinguistic research. Moreover, understanding how
closely they align with human cognitive processes could
inform the refinement of AI architectures, enabling the
development of models that better capture human-like se-
mantic organization. GPT-4o is a state-of-the-art (SOTA)
model in numerous linguistic domains, including natural
language understanding, text generation, translation and
dialogue systems. Its ability to produce highly coherent,
human-like linguistic artifacts makes it an ideal candidate
for investigating semantic priming effects. Beyond the
mere scarcity of experiments on priming, there remains
a broader and more fundamental question: To what ex-
tent do LLMs, particularly closed-source models, exhibit
semantic processing mechanisms that align with human
psycholinguistic assessments? While extensive research
has been conducted on model performance and gener-
ative capabilities, little is known about whether their
response to such assessments parallel those reported in
human. This is particularly relevant given GPT-40’s au-

toregressive nature, where each word is predicted based
on the preceding context. This mechanism inherently
mirrors aspects of the human predictive processing in
language comprehension, making it a suitable ground for
examining whether priming emerges from the model’s
output.

Research Question and Hypotheses. The present
work proposes to investigate whether LLMs, such as GPT-
40', exhibit semantic priming effects similar to those
observed in human cognition, exploring if semantic as-
sociations emerging from their probabilistic outputs re-
flect transferable cognitive mechanisms. This research is
situated within a growing field that compares Al to hu-
man cognition, exploring parallels and divergences. The
aim is to assess whether the model not only reflects sim-
ple statistical learning but also develops semantic struc-
tures resembling human semantic networks. In other
words, the goal is to determine whether the autoregres-
sive behaviour of the model generates priming effects
comparable to those observed in traditional psychological
paradigms. Therefore, the research question we propose
is the following: Does GPT-40 mini model exhibit a signif-
icant difference in the probability values of target words
when presented in related priming conditions compared
to unrelated conditions?

Expected Outcomes. It is hypothesized that targets
will exhibit higher probabilities values in the related con-
dition compared to those presented in unrelated con-
ditions. This structure allows for the investigation of
whether the emergent cognitive traits of LLMs can be
considered analogous to the dynamics of human seman-
tic memory and whether traditional psycholinguistic
paradigms can be employed to evaluate the validity of
these models as devices for cognitive research.

2. Methodology

In autoregressive systems as GPT-4o, text generation
is fundamentally modelled as a conditional probability
problem. The model predicts the next word in a sequence
based on the preceding context, represented mathemati-
cally as

1)

where P(w;) is the probability of generating a word
given the previous ones. This probabilistic framework
underpins how the model processes language and gener-
ates outputs, making it a suitable foundation for inves-
tigating semantic priming effects. In the context of this

P(w¢|wr, wa...wi—1)

!The experiment was run with GPT-40 mini. However, we will often
refer to it as GPT-40 or GPT throughout the text. This is just to
make reading as smooth as possible.



experiment, the target word is presented after a prime
that is either semantically related or unrelated. To assess
whether GPT-40 exhibits priming effects, the following
contrast was applied

P(target|related_context)
)

If semantic priming is present, the model should as-
sign a higher probability to the target word in the related
condition, reflecting an internal representation of seman-
tic association similar to those of humans. GPT models
output not only the predicted tokens but also the log-
probabilities (log-probs) associated with each token

vs P(target|unrelated_context)

(3)

A log-prob closer to 0 indicates a higher predicted
probability, while more negative values indicate lower
confidence in the prediction. In this experiment, we use
log-probs to quantify the model’s confidence in predict-
ing the target word. Thus, semantic priming is opera-
tionalized as

logprob(w;) = log[P(w¢|w1, wa, ..., wi—1)]

logprobreiatea(target) > logprobunreiated(target)
(4)

2.1. The Experiment

Our operationalization of priming diverges from the
maybe more familiar formulation of computing prim-
ing as the difference in the log probability of a fixed
target given congruent versus incongruent primes [6, 7]
because we aim to isolate semantic activation in contexts
where the is not trivially predicable and to control for
context-dependent insertion effects. In particular, the
fill-in-the-gap setup we use allows us to: (i) position
the target in a controlled environment so that its activa-
tion can be assessed relative to a specific semantic cue
(the prime), and (ii) avoid conflating effects due to target
salience or surface-form predictability that a straight-
forward target-difference formulation might implicitly
include. We evaluated the design quantitatively and en-
sured that it produces a signal consistent with priming as
a contextual modulation of likelihood, without relying on
the assumption that the target sentence is equally well-
formed or equally predictable across conditions. Concep-
tual comparisons suggest that our pipeline captures the
same directional priming influence while offering control
over the insertion context and over cases where native
target continuity would otherwise introduce ambiguity.
A schematic of the pipeline and an illustrative example
are provided below.

In this experiment, GPT-40 mini was presented with
prime-target pairs, where the prime word was either
semantically related or unrelated to the masked target
word embedded within a sentence. For each trial, the
model received a prompt consisting of the prime followed
by a sentence with the target word omitted and was
instructed to generate a single word to fill the blank.

Stimuli Presentation. The stimuli were presented to
GPT through 500 structured API calls designed to simu-
late an experimental paradigm of cognitive psychology.
Each stimulus consisted of a prime word (semantically
related or unrelated to the target) and a sentence con-
taining a masked target word. The API was configured
to prompt the model with both the prime and the incom-
plete sentence as input text: [Prime Word]. [Sentence
with the target masked as "..."].

Table 1
The prompt used during the experimentation

(model = gpt-4o0-mini,

messages = [

{“role”: “system”,

“content”: “you do text-completion.
I will provide you a sentence with a blank ‘. . .
your task is to return a single word},
to complete it.”},

{"role": "
1,

Temperature = 0

"user content”: input_text }

For example, in a related condition, the prime “be-
low” may precede the sentence “The Ferrari finished six
places ...the Mercedes”, where the target is "above”. In
the unrelated condition, the same sentence would be
preceded by an unrelated prime such as “postage”. This
structure allowed for direct comparison of the model’s
predictions across priming conditions. To ensure con-
trolled responses, the model was provided with a system
instruction to return a single-word completion for the
masked portion of the sentence. The temperature was set
to zero to minimize randomness and enforce determinis-
tic outputs, and finally log-probs were requested for the
predicted token, together with the top 15 alternatives.

Retrieval of Log-Probabilities. Log-probs provide
an exhaustive measure of the model’s confidence in pre-
dicting a given token because they reflect the proba-
bility distribution over multiple possible continuations,
rather than just the most likely one. They allow for a
nuanced comparison of how strongly the model favours
certain predictions, making them particularly useful for
assessing semantic priming effects. However, retrieving
log-probs for the intended target posed a computational



challenge due to the tokenization structure of GPT out-
puts, requiring a sophisticated reconstruction algorithm.
When GPT generates a response, it predicts the single
most likely token (i.e., the actual completion), but it can
also return log-prob values for multiple alternative pre-
dictions—if explicitly requested in the API call. These
values are stored in a structure that contains the pre-
dicted token along with a ranked set of alternatives, each
associated with its probability. An additional compli-
cation arose because GPT often predict sub-word units,
meaning that a target word might be split into multiple
tokens®. Such level of complexity necessitated a recon-
struction system capable of piecing together each “brick”
to retrieve the log-probability of the intended word. The
retrieval system operated by matching the original tar-
get word against the set of alternative completions of
the model. If the target appeared in its entirety among
the predictions, its associated log-prob was directly ex-
tracted. Conversely, when the model provided sub-word
tokens, a beam search strategy was employed to recon-
struct the word step-by-step. At each stage, candidate
sequences were expanded by adding predicted tokens,
ensuring that only those maintaining a valid morpholog-
ical match with the target were retained. Once a valid
reconstruction was found, the sum of the probabilities of
constituent tokens was computed, and the least negative
candidate (i.e., the most probable one) was selected as
the best match. Where no reconstruction matched the
original target, no log-prob was assigned (NaN), leaving
its interpretation for later stages of analysis.

« A randomly chosen prime-target pair was
selected from SPP in the related condition.

+ The corresponding prime-target pair was
selected to contrast with the related condi-
tion.

« Only first-associate (most common) target
was considered, ensuring strong semantic
links for the related condition.

2. Pairing process:

« Each related and unrelated prime was
paired with the same target word, creat-
ing a contrastive pair.

3. Contextual sentence construction:

+ A sentence was invented to serve as a con-
textual frame for the target word.

+ The target word was removed from the
sentence and replaced with a placeholder
("..") creating a fill-in-the-blank format for
the model.

4. Tabular data representation:

« The entire dataset was stored in a struc-
tured tabular format, with each stimulus
set organized as follow.

Table 2
Example of Prime-Target Stimuli: Each two consecutive rows
represent a contrastive pair

ID Type Prime Target  Sentence
Data Construction. The stimuli set was built follow- “The Ferrari finished six
. . : 001  Related below above N
ing previous research [8] and was designed to ensure places ... the Mercedes
that semantic associations were robustly controlled. A “The Ferrari finished six
002  Unrelated postage above

total of 250 triplets (target, related prime, unrelated places ... the Mercedes”

prime) were selected from the Semantic Priming Project
(SPP), a widely used database containing highly validated
prime-target association from human behavioural stud-
ies. The rationale behind using SPP was its empirical
grounding—these prime-target pairs have been exten-
sively tested in psycholinguistic experiments, making
them an ideal starting point for evaluating whether LLMs,
like GPT, exhibit cognitive processes akin to those ob-
served in human behavioural tests. Given that GPT is
trained on massive linguistic corpora, it has probably
internalized complex semantic structures, making it a
suitable model for priming-based investigations. To con-
struct the experimental dataset, the following procedure

was applied:

1. Selection of prime-target pairs:

2All GPT models leverage a Byte Pair Encoding (BPE) tokenizer,
which allows for flexible and semantically complete processing of
linguistic data

2.2. Statistical Testing

To determine whether GPT-40 exhibits semantic priming
effects, a statistical approach was designed to compare
the log-probabilities of target words across related vs.
unrelated priming conditions. Since log-probs are con-
tinuous numerical values, they provide a measure of the
model’s confidence in predicting a given word, making
them suitable for inferential statistical analysis. The key
objective of this analysis was to assess whether log-probs
were significantly higher (closer to 0) in the related con-
dition compared to the unrelated condition, mirroring
the facilitatory mechanism observed in human priming
studies. Given the paired nature of the data—where each
target word appears in both conditions with the same
sentence context—the statistical analysis was designed
to compare log-probs at the within-item level. Statistical
tests often require that data distribution meets certain



assumptions. Specifically, normality was a key consider-
ation: if the distribution of log-probs followed a normal
pattern, a paired t-test would be appropriate; if not, a
Wilcoxon signed-rank test, a popular non-parametric al-
ternative, would be used instead. Following this strategy,
an initial assessment of normality was planned, ensur-
ing that the choice of statistical test was applied ad-hoc,
rather than arbitrary. This decision was crucial because
log-probs are inherently skewed measures, often concen-
trated around certain thresholds, and the dataset was
expected to contain NaN values where the model failed
to predict (or the retrieval algorithm failed to recompose)
the target word. To maintain statistical rigor, missing
values would be handled through imputation, but this
step also had the potential to affect normality, requiring
a flexible approach.

Multiple Imputation Approach. The first strategy
involved multiple imputation, a statistical technique that
estimates missing log-probs based on the distribution
of observed data. Imputation is considered a reasonable
approach to retain a larger dataset while minimizing bias.
Here, an assumption of near-random data missingness
had been adopted, although similar hypotheses are often
difficult to verify.

Complete Case Analysis. Precisely because it is diffi-
cult to determine with certainty whether the data is miss-
ing for largely random reasons, it is also useful to perform
the test on the dataset without imputation. Therefore,
the second approach involved analysing the subset of
the results where log-probabilities for each condition
were reconstructed. Both approaches were then tested
following the statistical decision tree: if normality was
preserved, a paired t-test would be applied; if not, the
Wilcoxon signed-rank would be used instead.

3. Results

The aim of this results section is to determine whether
GPT-40 mini exhibits semantic priming effects, measured
as differences in log-probabilities of target words in re-
lated vs. unrelated priming conditions. Given the pres-
ence of missing—cases where the experiment failed to
generate the expected target word—two complementary
analytical approaches were adopted. Summarizing from
the previous section: (a) Multiple Imputation, which esti-
mates missing values to maintain the statistical power,
and (b) Complete-Case Analysis, which restricts the
dataset to instances where log-probs were successfully
retrieved in both conditions, ensuring pairwise compar-
isons.

Multiple Imputation Results. Before conducting hy-
pothesis testing, missing values in log-probs were ad-
dressed using multiple imputation (MI). Out of 500 total
observations, 201 (40%) were missing, requiring impu-
tation to allow for a complete dataset. Five imputed
datasets were generated using a multivariate imputer
that estimates each value from all the others. Pooled
estimates were finally derived. To assess how impu-
tation affected the distribution of log-probs, summary
statistics were calculated before and after imputation.
The only relevant variation is over standard deviation
(std). To determine whether a parametric test or a non-
parametric alternative was appropriate, normality of the
imputed log-probs was assessed using the Shapiro-Wilk
test. This evidenced a significant departure from nor-
mality (W = 0.891,p < 0.05) indicating that a non-
parametric test was required for hypothesis testing. A
Wilcoxon signed-rank test showed that there is no strong
evidence that GPT-40 mini assigned significantly higher
log-probs to targets in the related condition vs. the unre-
lated condition (7" = 441.0, p = 0.088). This contrasts
with expectations, as human studies typically show a
clear priming effect in reaction times and lexical decision
tasks.

Complete-Case Results. The complete-case analy-
sis was conducted using only full retrieved prime-target
pairs, ensuring that all statistical comparisons were based
on directly observed data. Out of 500 total trials, 298 log-
prob values were successfully retrieved, but only 127
contrastive pairs could be reconstructed for direct com-
parison. This represents a substantial reduction in sample
size, which affects statistical power but ensures that no
assumptions were made about missing values. Congru-
ently to what was done with imputed data, a normality
assessment was conducted to confirm a strong deviation
from normality (W = 0.789,p < 0.05). Since normal-
ity assumption was violated, a Wilcoxon signed-rank
test was conducted to compare the survived log-probs.
Unlike multiple imputation, the complete-case yielded a
significant result (I" = 1793.0, p < 0.05). This provides
evidence that GPT-40 mini exhibits a semantic priming ef-
fect, with significantly higher log-probabilities for target
words in related conditions than in unrelated conditions.

4. Discussion

The findings of this study offer an interesting perspec-
tive on the challenges of using LLMs in cognitive mod-
elling. While complete-case analysis detected a signifi-
cant priming effect, the multiple imputation approach did
not, raising important methodological and conceptual
inquiries. The discussion is divided into two sections:
(a) methodological considerations, focusing on missing



data challenges, tokenization artifacts, statistical sensi-
tivity, and potential imputation biases that may have
influenced the results and (b) conceptual implications,
addressing whether LLMs exhibit cognitive-like prim-
ing, how predictive mechanisms compare to biological
semantic encoding and retrieval and what these findings
mean for cognitive modelling.

4.1. Methodological Considerations
Handling Missing Data

In this experiment, a critical methodological challenge
was posed by missing data—40% of the log-prob val-
ues—requiring the use of multiple imputation to recon-
struct a complete dataset. MI is generally preferred over
list-wise deletion, as it preserves statistical power by
estimating missing values based on the observed distri-
bution. However, when such a substantial portion of data
is missing, MI may not fully recover the real distribution,
raising questions about representativeness. One conse-
quence is the arousal of variance compression in log-
probs values, testified by a shrink in standard deviation.
This phenomenon likely occurs predicting missing val-
ues based on observed ones, pulls extreme values toward
the mean. While this can stabilize estimates in smaller
datasets, it may have unintentionally smoothed meaning-
ful variability in the log-probs, affecting true distribution.
Indeed, normality test showed a significant departure
from normality after imputation was performed. Since
semantic priming effects are often subtle, any reduction
in variance could have diminished the contrast between
related and unrelated conditions, thereby weakening the
observable effects. This is consistent with the Wilcoxon
test result in the MI dataset, whereas the complete-case
analysis did detect a significant effect. The divergence
between imputed and complete-case results raises an im-
portant methodological question: did MI impoverish the
priming effect, preventing statistical detection, rather than
recover lost information? If the missing data was missing
not at random (MNAR)® but instead systematic then MI
could have incorrectly smoothed meaningful distinctions,
masking an effect that was present in the raw data.

Tokenization and Target Reconstruction Bias. A
significant challenge in the experiment was retrieving
log-probabilities for target words due to GPT’s sub-word
tokenization. Like other transformer models, it does not
always generate words as units, instead break less fre-
quent or morphologically complex words into multiple
sub-word tokens via BPE. This posed a serious obsta-
cle to probability extraction. Further complicating word

$Unfortunately, there is no surefire way to determine in which cat-
egory data will fall. Random missingness is an assumption that
need to be made based upon direct knowledge of the data and its
collection mechanisms.

retrieval was the format of the model’s output, which
returns a ranked list of predicted tokens along with their
log-probs. In cases where the model generated the target
as a single token extraction was straightforward. How-
ever, when the model split the target across multiple to-
kens, its overall log-prob had to be reconstructed from its
individual components—a process that introduces uncer-
tainty. To tackle this challenge, a beam search algorithm
was implemented to iteratively reconstruct multi-token
targets from the list of predicted sub-word tokens. While
beam search improved reconstruction, it also introduced
potential artifacts: (a) some reconstructions may not have
perfectly matched the intended target, leading to incor-
rect log-prob values, and (b) certain targets may have
been tokenized inconsistently. If tokenization patterns
differed systematically between conditions, this could
have biased log-prob retrieval, introducing a confound.

Statistical Sensitivity and Priming Detection. That
being said, divergent findings in MI and complete-case
results likely arise from two interrelated factors: (a) vari-
ance compression introduced by imputation, which may
have diluted the contrast between related and unrelated
conditions, and (b) tokenization and reconstruction in-
consistencies, which could have added noise to log-prob
retrieval, particularly in cases where targets were split
into multiple tokens. The takeaway is that priming sig-
nal drawn from next-word probability retrieval in LLMs
may be relatively weak, making it overtly susceptible to
distortions introduced by data pre-processing.

4.2. LLMs and Cognitive Modelling

The methodological considerations discussed so far
demonstrated how data pre-processing choices and tok-
enization can influence statistical sensitivity in LLM cog-
nitive experiments. However, these findings also raise
deeper conceptual questions: To what extent do LLMs
exhibit semantic priming effects comparable to those ob-
served in human cognition? And if LLMs capture statisti-
cal relationship between words, does this also means that
they can replicate the cognitive mechanisms underlying
human semantic memory? To answer such questions, it
is possible to draw insights from the two dominant theo-
retical frameworks that have shaped our understanding
on semantic processing: spreading activation theory, as
already presented in the introductory section and in the
predictive coding theory (Friston, 2005). These models of-
fer different perspectives on how the brain organizes and
retrieves meaning and comparing findings from present
work allows to assess the extent to which LLMs approx-
imate cognitive mechanisms. The rest of this section
reflects on these themes.



Spreading Activation, Semantic Memory and LLMs
The spreading activation theory (Collins & Loftus, 1975)
suggests that semantic memory is structured as a network
of interconnected concepts, where activation spreads
from one node (a word/concept) to related nodes based on
semantic similarity and association strength. This model
has been widely supported by human psycholinguistic
studies. The priming effects detected in the complete-case
analysis seems to align with spreading activation frame-
work. LLMs, much like human semantic memory, links
concept by encoding statistical co-occurrence patterns be-
tween words—though they do it on a considerably larger
scale. However, while human priming effects are driven
by neural activation spreading across conceptual net-
works, GPT does not store explicit semantic structures, it
instead predicts word based on learned probability distri-
butions. This distinction is crucial: in human cognition,
spreading is dynamically modulated by context, prior ex-
perience, and attentional control, whereas LLMs’ priming
emerges from purely statistical dependencies in language
data. Current results suggest that semantic priming ef-
fects in GPT do not necessarily indicate cognitive-like
concept retrieval. The observed priming effect is likely
a by-product of training, rather than a direct parallel to
human conceptual activation. Additionally, the lack of
a significant effect in MI dataset further challenges the
idea that LLM-based priming mirrors human spreading
activation dynamics. According to human experiments,
priming effects persist despite noise or missing data be-
cause activation propagates through associative memory
networks. In contrast, the weakening of priming in the
imputed dataset suggests a more fragile mechanism.

Predictive Coding and the Mechanisms Underlying
Priming in LLMs. An alternative perspective for un-
derstanding semantic processing is predictive coding the-
ory [9]. This model suggests that the brain functions as a
hierarchical predictive system, continuously generating
expectations about incoming sensory input and minimiz-
ing prediction errors by adjusting internal models. In this
framework, priming occurs because a related prime re-
duces the uncertainty (prediction error) associated with
recognizing the target, leading to faster processing. LLMs,
particularly autoregressive models like GPT, operate in a
manner structurally similar to predictive coding. They
generate words one at a time, updating predictions based
on past context. This aligns with the core principle of
predictive coding. The log-probabilities extracted in this
study measure the system’s internal prediction certainty,
making them conceptually analogous to prediction error
signals in the human brain. The critical difference is that
in biological brains, prediction errors lead to adaptive
training and belief updating, whereas in LLMs, prediction
errors do not modify the model in real-time—they rather
influence generation for a short time-window, impact-

ing token selection within the fixed-parameters of the
trained model. This means GPT does not actively mini-
mize uncertainty over time. The experimental findings
support this distinction. In human coding models, prim-
ing effects are expected to persist across different noise
conditions because the brain continuously adjust its pro-
cessing. In contrast, the fragility of GPT’s mechanisms
suggests that the models lack a hierarchical learning pro-
cess that adapts to uncertainty over time. This highlights
a fundamental limitation of LLMs: while they approxi-
mate prediction-driven behaviours, they do not engage in
error-driven learning during inference, a key component
of human cognition. As a result, while priming in LLMs
may superficially resembles predictive coding, it does not
capture the adaptive mechanisms that govern biological
semantic memory. The results of this study highlight an
ongoing debate in cognitive modelling: to what extent
do LLMs exhibit cognitive-like processing? The presence
of a priming effect suggests that. LLMs capture mean-
ingful relationships between words, much like spreading
activation models, but the disappearance of this effect in
the imputed dataset suggests that LLMs’ priming is more
fragile than human priming. Together, these findings
give the impression that LLMs do not simulate human
cognition in a mechanistic sense. Instead, they exhibit
statistical properties that resemble cognitive processes
at the output level but are not necessarily driven by the
same underlying computations.

Final Thoughts and Future Directions. We firmly
believe that while LLMs do not currently replicate hu-
man semantic cognition, they offer valuable tools for
modelling language-based associations. It is our opin-
ion that the presented approach may be improved and
extended:

1. Target predictability: controlling for how pre-
dictable a target word is in natural language using
frequency norms, surprisal values and entropy-
based estimates. This would help disentangle se-
mantic priming from simple word predictability
in LLMs.

2. Word frequency effects: since high-frequency
words are easily predicted and low-frequency
words may be underrepresented in training data,
future experiments should systematically control
word frequency to determine its impact in prim-
ing strength.

3. Contextual influence: LLMs process meaning
based on statistical co-occurrence within a fixed
context window, which may amplify or suppress
subtle priming effects. Future studies should ma-
nipulate prime-target distance to assess if context
length and structural dependencies influence re-
sults. Additionally, future research should explore



alternative token-matching strategies, ensuring
log-probs reconstruction does not systematically
fail with certain word structures. And finally,
it should be also considered if modifying LLM
architectures—for example, incorporating mecha-
nisms for hierarchical belief updating similar to
predictive coding models—would lead to more
cognitively plausible representations of meaning.

Comparative studies relating neural language process-
ing signals (e.g., N400 effects) to outputs of LLMs have
been increasingly prominent. Heilbron et al. [10, 11]
demonstrated that predictability estimates produced
by deep neural language models (e.g., GPT-2) corre-
late with EEG/MEG components—including N400 and
P600—during naturalistic comprehension, providing di-
rect evidence that model-derived surprisal signals track
human-like prediction dynamics. Subsequent work has
further refined the cognitive plausibility of transformer-
based models in this domain, showing that their contex-
tual predictions are closely aligned with neural signa-
tures of semantic facilitation and processing difficulty
[5]. While Futrell et al.[12] approach the question from a
complementary angle—treating neural language models
as psycholinguistic subject to probe their internal syntac-
tic representations—these strands jointly motivate our
effort to align LLM-based priming metrics with known
neural phenomena.

Code Availability

Code and data for reproducing the results are pub-
licly available on GitHub at https://github.com/fico/
semantic-priming-in-LLMs
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