
Diffusion-Aided RAG: Elevating Dense-Retrieval Chatbots
via Graph-Based Diffusion Reranking
Sai Teja Dampanaboina1, Sai Nishchal Gamini1, Karishma Kunwar1, Marco Polignano2,
Marco Levantesi1,3, Giovanni Semeraro2 and Ernesto William De Luca1,3

1Otto-von-Guericke University, Universitätspl. 2, 39106 Magdeburg, Germany
2University Of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
3Leibniz Institute for Educational Media | George Eckert Institute, Brunswick, Germany

Abstract
This paper presents a comprehensive framework for enhancing dense-retrieval-based chatbots through the integration
of graph-based diffusion reranking. Addressing challenges in traditional retrieval-augmented generation (RAG) systems,
the proposed methodology incorporates a multi-step pipeline that advances document retrieval and relevance ranking.
Initially, candidate passages are retrieved via dense embeddings, followed by the construction of a graph representation that
captures inter-passage semantic relationships. Through a graph-based diffusion process, the reranking mechanism refines the
selection, amplifying clusters of contextually relevant documents while mitigating noise effects from irrelevant data points.
Experimental results demonstrate significant gains in retrieval quality and question-answering accuracy, underscoring the
framework’s potential for knowledge-intensive real-time applications such as conversational AI. This work reflects a pivotal
step towards developing highly accurate, dynamic, and scalable multimodal conversational systems.

Keywords
Retrieval-Augmented Generation, Large Language Models, Chatbots, Knowledge Graph, PageRank

1. Introduction
Advanced chatbots and other modern NLP tools need
fast access to up-to-date, specific information. Although
Large Language Models (LLMs) can generate fluent re-
sponses and handle a wide range of topics, they’re stuck
with whatever they learned during training, and their
knowledge can become outdated or be too general [1].
RAG [2] solves this by enabling the LLM to retrieve infor-
mation from an external database that can be updated in
real time. This strategic decoupling of the LLM’s genera-
tive function from data management, including storage,
indexing, and crucially, retrieval, allows for continuous
knowledge updates, thereby enhancing the responsive-
ness, reliability, and domain fidelity of such systems. Be-
ing able to quickly and accurately find the right informa-
tion from a variety of sources is essential for powering
these next-generation NLP systems.

Information Retrieval (IR) has evolved a lot to help us
find relevant information more quickly and accurately
in huge collections of text [3]. Instead of just matching
words on the page, many modern systems use dense rep-
resentations; basically, numeric embeddings that capture

CLiC-it 2025: Eleventh Italian Conference on Computational Linguis-
tics, September 24 — 26, 2025, Cagliari, Italy
*All authors contributed equally.
$ sai.dampanaboina@ovgu.de (S. T. Dampanaboina);
sai.gamini@st.ovgu.de (S. N. Gamini);
karishma.kunwar@st.ovgu.de (K. Kunwar);
marco.polignano@uniba.it (M. Polignano)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

the meaning of queries and documents. This method,
called dense passage retrieval [4], makes it possible
to find passages that are related in meaning even if they
don’t share the same exact words. Still, pulling back the
single best set of passages from an enormous database
is tough, and the first batch of results often require ad-
ditional refinement to make sure they’re really on point.
That’s why it’s common to run additional steps like re-
ranking to fine-tune and improve the final selection.

We aim to make dense passage retrieval work even
better by using a multi-step pipeline. First, we pull an
initial batch of candidate passages with a dense retriever.
Then we turn those top documents into a graph and run
a diffusion process over it. This lets us capture how the
passages relate to each other. By using this graph-based
diffusion as a re-ranker, we can tweak the initial scores
so that the most truly relevant passages end up at the
top. The objective is to demonstrate how combining
dense retrieval with graph-based diffusion re-ranking
can yield superior retrieval performance, providing a
more accurate and contextually relevant set of documents
essential for applications requiring dynamic knowledge
access.

2. Related Work
In recent years, advances in Large Language Models
(LLMs) and AI-driven dialog systems have enabled more
dynamic, retrieval-augmented conversational platforms.
One foundational effort was introduced by Guu et al.

mailto:sai.dampanaboina@ovgu.de
mailto:sai.gamini@st.ovgu.de
mailto:karishma.kunwar@st.ovgu.de
mailto:marco.polignano@uniba.it
https://creativecommons.org/licenses/by/4.0


in the REALM framework [5], which demonstrated the
effectiveness of retrieval-augmented language model pre-
training by fine-tuning on open-domain question answer-
ing (Q&A). At inference time, REALM fetches documents
using dense embeddings and conditions the generator
on retrieved passages. Building on this idea, Lewis et
al. formalized the Retrieval-Augmented Generation
(RAG) architecture [2] , showing that coupling dense
retrieval with a pretrained sequence-to-sequence model
improves factual grounding and generalization in Q&A.
Unlike traditional LLMs that rely solely on parametric
memory, RAG leverages a non-parametric index to fetch
up-to-date, domain-specific information during genera-
tion.

Prior to dense retrieval, sparse vector-space meth-
ods—such as TF-IDF or BM25—were the de facto stan-
dards for fetching relevant documents [6]. Although
BM25 performs well on short, keyword-based queries,
it struggles with semantic matching in open-domain
contexts[7]. Karpukhin et al. [4] showed that a dual-
encoder dense retrieval model, trained on relatively few
question–passage pairs, could outperform a strong BM25
baseline. Subsequent work by Xiong et al. [8] and Qu
et al. [9] confirmed that dense retrievers better handle
paraphrased, abstract, and long-tail queries. These stud-
ies also highlighted challenges in dense retrieval—such
as selecting hard negatives and mitigating false nega-
tives—and proposed improvements in training objectives
and negative sampling strategies.

Despite these advancements, the top-k passages re-
turned by a dense retriever may include semantically
similar but contextually irrelevant documents. To ad-
dress this, our work introduces a graph-based diffu-
sion re-ranking step over the initial dense retrieval
results. This idea is inspired by Donoser and Bischof’s
diffusion process for visual retrieval [10], where each
document is treated as a node in a similarity graph and
scores propagate through edges to refine ranking. We
adapt this diffusion-based re-ranking to text-based re-
trieval by constructing a graph over the top retrieved
chunks and iteratively propagating similarity scores to
emphasize manifold structure rather than relying solely
on pairwise dot products.

However, to our knowledge, prior RAG-style systems
have not integrated graph-based diffusion re-ranking to
refine their dense retrieval outputs. In this paper, we
propose such an integration and demonstrate its effec-
tiveness on benchmark Q&A datasets.

3. Methodology
This section details the design and implementation of our
dense-retrieval chatbot. The system employs a graph-
based diffusion re-ranking mechanism to enhance re-

trieval accuracy. We have designed a web application and,
the processing pipeline consists of six sequential stages:
input acquisition, intent classification, intent-based rout-
ing, dense retrieval, graph-based re-ranking, and large
language model (LLM) response generation. All inference
components are deployed on a GPU when available, with
a fallback to CPU. A local Milvus-Lite instance serves
as the vector store [11], and Google’s Gemini Pro model
[12] functions as the core LLM.

3.1. System Architecture
The chatbot is implemented as a modular Flask server
[13] that listens for cross-origin requests. Upon ini-
tialization, the server launches a Milvus-Lite instance,
creating or loading a collection named rag_collection
into memory from a persistent storage directory (./mil-
vus_data). Simultaneously, several models are pre-loaded
to minimize inference latency: a. Speech-to-Text: The
OpenAI Whisper medium model (769M parameters)[14],
b. Intent Classification: A LoRA-fine-tuned RoBERTa-
base model [15], c. Language Generation: The Google
Gemini client, configured via an API key [16]. The em-
bedding model, openai/clip-vit-base-patch32, is
loaded. The system’s behavior can be dynamically
altered via a dedicated API endpoint that toggles a
"GLOBAL_SEARCH_MODE" flag, forcing all queries to
be routed to the web search module, thereby bypassing
intent classification. API keys for Gemini and SerpAPI
are managed as environment variables.

Figure 1: Overview of our Retrieval-Augmented Generation
(RAG) architecture: user queries are first routed by an intent
classifier to either SERP API or Retriever or directly to LLM;
candidate passages are then fetched via dense retrieval and
refined through a graph-based diffusion re-ranking stage; fi-
nally, the top-ranked context is fed into a generative LLM to
produce the response.



3.2. Corpus Construction and Indexing
The knowledge base for Retrieval-Augmented Gener-
ation (RAG) is derived from a collection of PDF and
plain-text documents stored in a designated directory.
An offline ingestion script (ingest_embeddings.py) pro-
cesses these sources into a searchable vector index.
Firstly, PDF documents are converted to Markdown us-
ing the Docling library[17], with OCR enabled to extract
text from scanned pages. Plain-text files are read di-
rectly. The Markdown content is first segmented into
logical blocks (e.g., headings, paragraphs, table rows).
These blocks are then aggregated into chunks of up
to 500 words with a 50-word overlap between consec-
utive chunks. This overlap strategy ensures contex-
tual continuity across chunk boundaries. Each text
chunk is embedded using the Hugging Face implementa-
tion of openai/clip-vit-base-patch32 [18]. The
get_text_features() method produces a 512-dimensional
vector, which is then normalized to unit ℓ2 norm. The re-
sulting embedding vectors are indexed in the Milvus-Lite
rag_collection. Each entry includes the vector (emb) and
associated metadata: source_path, a unique chunk_id,
the full chunk_text, and a 200-character chunk_preview.
An IVF_FLAT index is built on the embedding field with
nlist = 128, partitioning the vector space to accelerate
searches. The entire index is loaded into memory for
high-speed nearest-neighbor lookups.

3.3. Core Processing Pipeline
Incoming user requests, whether text or speech, trigger
a multi-stage process to generate a contextually relevant
response. The system acquires user input through two
primary endpoints: a speech input API that transcribes
audio files using a Whisper model [14], and a text input
API that accepts JSON payloads with the conversation
history [1]. Once the user’s query is obtained, it under-
goes intent classification by a fine-tuned RoBERTa-base
model (which has been fine-tuned by us using Low- Rank
Adaptation (LoRA) technique on a synthetic dataset cu-
rated by us which is used for training, categorizes the
text as a"RAG Search", "Web Search", "Greeting" or "Con-
versation Meta".

This classification model was optimized using Low
Rank Adaptors with a rank of r=8 and a scaling factor
of 𝛼=16, applied to the query and key projection matri-
ces. Based on the resulting intent, the query is routed
down one of three paths: "Greeting and Conversation
Meta" intents bypass retrieval and generate a direct re-
sponse from the role of the LLM and conversation history
respectively; a "Web Search" classification triggers a web-
augmented generation path; lastly, the "RAG Search" in-
tent activates a dense retrieval and re-ranking pipeline for
a RAG-augmented response. When the query is directed

to web search, it fetches the top 20 results, forwards to
the LLM along with the conversation history and the
LLM generates the response. If the query is directed to
the RAG retriever, the dense retriever and page re-ranker
comes into play which retrieves the relevant document
chunks from the vector database and forwards them to
LLM for it to generate a response. A global flag can over-
ride this logic and force any query to use the Web Search
path. When enabled, even queries that would normally
directed to the RAG Retriever or go straight to the LLM
are redirected to fetch live results via the SERP API. This
ensures that all responses are grounded in the most up-to-
date information available. This is ideal for time-sensitive
domains like news, finance, or rapidly evolving technical
fields.

3.4. RAG Search: Dense Retrieval and
Diffusion Reranking

For queries that are classified as "RAG Search" requir-
ing information from the internal knowledge base, the
system executes a sophisticated retrieval and reranking
process. During initial retrieval, the raw query is embed-
ded using the openai/clip-vit-base-patch32[18]
model to produce a 512-dimensional query vector, 𝑞vec.
This vector is used to search the Milvus collection for the
top 50 most similar chunks based on inner-product simi-
larity, with search parameter nprobe=10. The top 𝑛 (up
to 50) candidate chunks are used to construct a weighted,
undirected graph G = (V, E), where each node 𝑣𝑖 ∈ 𝑉
represents a candidate chunk. An edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 is
created for every pair of nodes, with its weight set to
the cosine similarity between their respective embedding
vectors. This results in a complete graph that captures
the semantic manifold of the candidate set.

To refine the initial ranking, we employ personalized
PageRank (Diffusion). A personalization vector p is con-
structed directly from the raw dense retrieval scores 𝑠𝑖
of the 𝑛 candidate chunks, where each component is pro-
portional to the initial dense retrieval score of candidate
𝑖. Thus, p is neither empty nor randomly initialized—it
is deterministically defined by normalizing the retrieval
scores, ensuring higher-scored chunks receive greater
weight:

𝑝𝑖 =
𝑠𝑖∑︀𝑛
𝑗=1 𝑠𝑗

, 𝑖 = 1, . . . , 𝑛, p ̸= 0,
𝑛∑︁

𝑖=1

𝑝𝑖 = 1.

(1)
This vector biases the random walk towards candidates

that were originally most relevant chunks standing before
we apply the graph diffusion step to the query. The final
PageRank scores, 𝜋 ∈ IRn, are computed iteratively via
the NetworkX library [19], solving the equation:

https://github.com/sai0499/Diffusion-Page-Reranking-aided-Dense-Retrieval-for-RAG-/blob/main/SyntheticDatasetforIntentClassifier/Intent_Classifier_Dataset%20-%20Processed.csv


𝜋 = 𝛼𝐴𝑇 𝜋 + (1− 𝛼)p

where A is the row-normalized adjacency matrix of G,
and the damping factor is set to 𝛼 = 0.85 because it is
the canonical value from the original PageRank paper
[9], striking a balance between “walking” the similarity
graph (propagating scores along edges) and “teleport-
ing” back to the seed nodes (initial retrieval scores) to
avoid getting stuck in tight clusters. Values much higher
(>0.9) can slow convergence and over-emphasize dense
subgraphs; values much lower (<0.7) behave more like
pure retrieval without graph smoothing. This diffusion
process up-ranks candidates that belong to dense, seman-
tically coherent clusters within the graph, mitigating the
risk of relying on isolated high-similarity outliers. For
context formualtion between the selected candidates, The
candidates are sorted by their final PageRank scores in
descending order, and the top K = 20 chunks are selected
to form the Retrieved Context. If the re-ranking step
is disabled or fails, the system falls back to the top 20
candidates from the initial dense retrieval. The top 20
candidates are selected because with trial and error we
have decided that selecting 20 number of candidates to
pass through the LLM is sufficient to cover the enough
potential context so that the relevant bits are not lost,
but to avoid dragging too many off topic chunks that
dilute the diffusion signal. Also, a 20-node graph is small
enough for sub-100 ms diffusion passes, keeping end-to-
end latency low. If the collection is huge, increasing the
number of top candidates to pass to the LLM would be
recommended.

3.5. Web Search Augmentation
For queries with the Web Search intent, the system
queries the Google Search engine via the SerpAPI. The
query retrieves the "answer box" and up to 20 top organic
results. The structured JSON response from the API is
serialized into a string. If the API call fails, the process
continues without web context.

3.6. LLM Prompting and Response
Generation

All prompts are submitted to the gemini-2.5-pro
model [12]. The final prompt is dynamically assembled
based on the routing path: Every prompt begins with a
fixed role definition and the current conversation history.
For example the payload JSON file would look like as
follows. In place of Role we would define the role of the
LLM to give it a persona and in place of conversation
history we would have the conversations between the
User and the LLM.

1 {
2 "text": Role + conversation history,
3 "rawQuery": User Query,
4 "skipApiKeyValidation": false
5 }

For RAG Search, the formatted top-20 re-ranked
chunks are appended under a Retrieved Context: heading
in the JSON file.

1 {
2 "text": Role + conversation history,
3 "rawQuery": User Query,
4 "skipApiKeyValidation": false
5 "Retrieved Context": Top 20 Chunks
6 }

For Web Search, the serialized JSON from SerpAPI is
appended under a Web Search Results: heading in the
JSON file.

1 {
2 "text": Role + conversation history,
3 "rawQuery": User Query,
4 "skipApiKeyValidation": false
5 "Web Search Results": Top 20 search

results
6 }

For Greeting and Conversation Meta intents, no addi-
tional context is added. The final composite prompt is
sent to the Gemini API. The extracted text from the re-
sponse is returned to the client in a JSON object contain-
ing the reply and the original intent.

4. Experiment
To evaluate the efficacy of our proposed chatbot,
particularly the contribution of graph-based diffusion
reranking, we designed a series of experiments. Our
evaluation aims to answer three primary research
questions:
RQ1: Component Efficacy: How accurately does the
intent classification module route user queries to the
appropriate processing pipeline?
RQ2: Retrieval Effectiveness: Does the proposed
graph-based diffusion reranking significantly improve
the quality of retrieved documents compared to standard
dense retrieval baselines?
RQ3: End-to-End Performance: Does the enhanced
retrieval quality from our reranking module translate
into more accurate, faithful, and helpful final responses
generated by the LLM?



This section details the experimental setup, the
datasets used, the baselines for comparison, the eval-
uation metrics, and a thorough analysis of the results.

4.1. Experimental Setup
4.1.1. Dataset Construction

To perform a realistic evaluation, we constructed a
domain-specific question-answering dataset tailored to
the Otto von Guericke University (OVGU) context in En-
glish language, but same process can be followed for any
other application domain. This reflects a practical ap-
plication scenario where students frequently seek quick,
reliable answers to academic queries,such as course de-
tails, procedures or administrative processes which are
typically spread across the university website and official
documents. The dataset was created as follows.

We generated a retrieval-augmented question–answer
(QA) dataset directly from our institutional PDF reg-
ulations and module handbooks using an end-to-end
open-source pipeline. First, all PDF files were loaded via
LangChain’s PyPDFLoader [20] and split into overlap-
ping text chunks (1000 characters, 200 characters over-
lap) with CharacterTextSplitter [21]. Each chunk was
encoded into a FAISS vector store [22] using sentence-
transformer embeddings (all-MiniLM-L6-v2) [23].
To produce questions, we initialized a local causal
LLM (Llama-2-7B via Hugging Face’s text-generation
pipeline) wrapped by LangChain’s HuggingFacePipeline
[24]. However, any other embedding strategy or LLM
could be used [25]. A few-shot prompt — “Given the
following excerpt, generate n unique, questions answer-
able from this content” — was applied to each chunk (n
= 2). Generated questions were de-duplicated in a case-
insensitive manner, yielding a pool of 80 unique ques-
tions.For each question, we ran a retrieval-augmented
QA chain: the FAISS retriever returned the top k = 4 most
relevant chunks, and the LLM instantiated a “stuff”-type
chain to produce concise answers, each appended with
inline citations pointing to the source document chunk.
All Q&A pairs were compiled into a final CSV (ques-
tion,answer) named RAG_evaluation_Dataset.csv, result-
ing in 80 high-quality, syllabus-grounded items. Our
fully local workflow relies exclusively on open-source
models (sentence-transformers for embeddings; Hug-
ging Face model for LLM) and FAISS for vector retrieval,
ensuring reproducibility and data privacy. All hyper-
parameters (chunk size, overlap, k, temperature = 0.3,
max_new_tokens = 512) are documented in our publicly
available script. The resulted csv file is manually verified
and introduced with typos into question to add noise to
the query to simulate the real world queries. Also we
have manually rechecked the answer by going through
the utilized documents.The dataset can be found in our

github repository.
We followed the similar procedure to generate the

dataset for training (a hybrid dataset, some elements of
the dataset are also taken from the publicly available
dataset [26]) and evaluation dataset for the intent clas-
sifier. The scripts for the evaluation data and training
dataset can be found in the publicly available script in
the github repository.

4.1.2. Implementation Details

All experiments were conducted on a single machine
equipped with a Ryzen 7 7800H, NVIDIA RTX 4060
GPU with 8GB VRAM and 16 GB of RAM. The system
implementation uses the library versions specified re-
quriements.txt file. The key hyperparameters for the
RAG pipeline, including 𝛼=0.85 for PageRank and K=20
for the number of retrieved chunks, were kept constant
across all experiments.

4.2. Intent Classification Fine-Tuning
We fine-tuned RoBERTa-base for intent classification
using a parameter-efficient LoRA setup. Our pipeline
comprises dataset preparation, LoRA integration, train-
ing, and evaluation. A CSV dataset of user queries
(Question) and intent labels (Label) was loaded, label-
encoded, and split 80/20 (seed 42) in a stratified fash-
ion. Queries were tokenized with RoBERTa’s tok-
enizer (max length 64), producing input_ids and
attention_mask fields wrapped in Hugging Face
Dataset objects. We loaded roberta-base configured
for 𝐾 intents and applied LoRA adapters (PEFT) to the
query and key projections with rank 𝑟 = 8, 𝛼 = 16,
and dropout 𝑝 = 0.05, freezing all other model weights.

Fine-tuning ran on GPU (or CPU) with seed 42. Key hy-
perparameters: We used Hugging Face’s Trainer with

Hyperparameter Value

Learning rate 2× 10−5

Weight decay 0.01
Batch size 8
Epochs 3
Evaluation strategy End of each epoch
Checkpoint retention Last two checkpoints
Selection criterion Best validation accuracy
Logging frequency Every 50 steps

Table 1
Fine-tuning hyperparameters for intent classification.

an accuracy metric (scikit-learn). The best checkpoint (by
validation accuracy) was evaluated on the held-out split.
For inference, inputs are tokenized to length 64, passed
through the model, and predicted indices are mapped

https://github.com/sai0499/Diffusion-Page-Reranking-aided-Dense-Retrieval-for-RAG-.git
https://github.com/sai0499/Diffusion-Page-Reranking-aided-Dense-Retrieval-for-RAG-/blob/main/SyntheticDatasetforIntentClassifier/SyntheticDataSetGenerator.py


back to label strings. This LoRA-based approach updates
a small fraction of parameters, yielding fast convergence
and lightweight deployment.

4.3. Baselines and System Variants
We compared our full system against several baselines
and ablations to isolate the impact of our contributions.
Lexical Baseline (BM25): A classic sparse retrieval sys-
tem using TF-IDF with the Okapi BM25 algorithm. This
represents a traditional, non-neural IR baseline. Dense
Retrieval Baseline (Dense-NoRerank): This system
uses the same CLIP-based query embedding and Mil-
vus index as our proposed method but omits the graph-
reranking step. It simply takes the top-K results based
on raw inner product similarity. This serves as our pri-
mary ablation to directly measure the impact of diffusion
reranking. Proposed System (Dense-Rerank): Our full
RAG pipeline as described in Section II, which includes
initial dense retrieval followed by graph-based diffusion
reranking. For end-to-end evaluation, the retrieved con-
text from each of these three systems is fed into the same
Gemini-2.5-pro model [12] using an identical prompt
structure.

4.4. Evaluation Metrics
We employed an automatic evaluation metric to assess
performance at different stages of the pipeline.

4.4.1. Intent Classification

We evaluated the LoRA-tuned RoBERTa classifier using
standard metrics on a held-out test set from our anno-
tated dataset. Accuracy: Overall percentage of correctly
classified intents. Macro-F1 Score: The unweighted
mean of the F1-scores for each of the four intent classes,
providing a balanced measure of performance.

4.4.2. Retrieval Performance

To answer RQ1, we have evaluated the quality of the
ranked list of documents returned by each retrieval
system against the annotated ground-truth chunks.

Normalized Discounted Cumulative Gain
(nDCG@K): Measures the quality of the ranking,
rewarding systems that place highly relevant documents
at the top of the list. We reported nDCG@5, nDCG@10,
and nDCG@20.
Mean Reciprocal Rank (MRR): Measures the average
reciprocal rank of the first relevant document. It is
particularly sensitive to how high the very first correct
answer is ranked.
Recall@K: The proportion of relevant documents found

within the top-K retrieved results. We reported R@5,
R@10, and R@20.

4.4.3. End-to-End Response Quality

To answer RQ2, we evaluated the final generated re-
sponses. Automatic Metrics like ROUGE-L (Measures
n-gram overlap with the reference answer, focusing on
recall.), BERTScore (Computes the semantic similarity be-
tween the generated response and the reference answer
using contextual embeddings.) have been considered.

4.5. Results and Analysis
4.5.1. Intent Classification Performance (RQ1)

We finetuned the model for three full epochs using a
linear learning-rate schedule from 2 × 10−5 down to
0. Figures 2–5 summarize key training diagnostics. The
details on finetuning of the model can be seen in the
section 4.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 L
os

s

Training Loss vs. Epoch

Figure 2: Training loss as a function of epoch. Loss fell precip-
itously from 1.38 to 0.05 within the first half-epoch and then
decayed asymptotically toward zero by epoch 3.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Epoch

0.9988

0.9990

0.9992

0.9994

0.9996

Ev
al

ua
tio

n 
Ac

cu
ra

cy

Evaluation Accuracy vs. Epoch

Figure 3: Evaluation accuracy versus epoch. Test accuracy
improved steadily from 99.875% at epoch 1 to 99.96875% at
epoch 3, indicating robust generalization gains.



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Le

ar
ni

ng
 R

at
e

1e 5 Learning Rate vs. Epoch

Figure 4: Linear learning-rate decay schedule from 2× 10−5

down to 0. Large early updates capture coarse structure, while
small late updates refine network parameters.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

1

2

3

4

Gr
ad

ie
nt

 N
or

m

Gradient Norm vs. Epoch

Figure 5: Gradient norm versus epoch. Gradients peaked
at ∼ 4.3 during initial iterations—facilitating escape from
the random initialization plateau—then dropped below 0.5
by epoch 1 and remained stable, indicating convergence to a
smooth minimum.

The rapid decline in training loss (Fig. 2) demonstrates
that the model quickly learns low-level patterns.
Evaluation accuracy (Fig. 3) increases monotonically,
from 99.875% to 99.96875%, while evaluation loss falls
from 0.00416 to 0.00123, indicating continued but
diminishing generalization improvements across epochs.
The learning-rate schedule (Fig. 4) balances coarse early
updates and fine-tuning in later epochs, and the gradient
norms (Fig. 5) confirm that the optimizer transitions
smoothly from high-magnitude updates to stable, small
magnitudes without oscillation or divergence. Overall,
these results validate our choice of schedule and training
regime, showing strong convergence with minimal
overfitting.

After finetuning the model, we have tested it in
two ways, using an previously discussed synthetic
dataset, which has 16K rows, where each classification

such as RAG Search, Web Search, Greeting, Conversa-
tion_Meta has 4K rows, to evaluate the model right after
finetuning and a custom made external dataset with the
real world queries which is constructed with the same
procedure mentioned in 4.1.1 to check the confusion
matrix apart from the confusion matrix generated from
the synthetic dataset. The discussed external dataset has
typos which generally seen in the real world usage.

Table 2 reports Accuracy and Macro-F1 on the held-
out portion of our annotated dataset. Table 3 and Table 4
shows the corresponding 4×4 confusion matrix (true ∖
predicted).

Table 2
Performance on synthetic dataset (800 examples per intent)

Accuracy Macro-F1

synthetic set 0.9988 0.9988

Table 3
Confusion matrix on synthetic dataset

True ∖ Predicted RAG Search conversation_meta greeting web search

RAG Search 800 0 0 0
conversation_meta 0 800 0 0
greeting 0 2 796 2
web search 0 0 0 800

Table 4
Confusion matrix on external dataset

True ∖ Predicted RAG Search conversation_meta greeting web search

RAG Search 20 0 0 0
conversation_meta 0 20 0 0
greeting 0 0 20 0
web search 0 0 0 20

On the annotated dataset, we achieve 99.88% Accuracy
and Macro-F1, with only four misclassifications (all in
the “greeting” intent). On the external test dataset , we
observe perfect scores with no off-diagonal errors. These
results indicate that our LoRA-tuned RoBERTa model is
highly reliable for routing user utterances to their correct
intents under both in-domain and held-out conditions.

4.5.2. Retrieval Effectiveness (RQ2)

We tested the retriever with the custom dataset that we
have discussed earlier in 4.1.1.

The diffusion-based reranking step yields a substan-
tial lift over plain dense retrieval: Early-rank gains:
nDCG@5 increases from 0.82 to 0.90 (+9.8%), and MRR
from 0.88 to 0.95 (+8.0%), showing that the first rele-
vant chunk is more consistently ranked at the very top.
Broader coverage: Recall@5 improves from 0.90 to 0.94,
indicating almost majority of the relevant passages are
captured within the top 5 results.

https://github.com/sai0499/Diffusion-Page-Reranking-aided-Dense-Retrieval-for-RAG-/blob/main/SyntheticDatasetforIntentClassifier/Intent_Classifier_Dataset%20-%20Processed.csv
https://github.com/sai0499/Diffusion-Page-Reranking-aided-Dense-Retrieval-for-RAG-/blob/main/SyntheticDatasetforIntentClassifier/Intent_Classifier_Dataset%20-%20Processed.csv
https://github.com/sai0499/Diffusion-Page-Reranking-aided-Dense-Retrieval-for-RAG-/blob/main/Python-Server/RAG_evaluation_Dataset.csv
https://github.com/sai0499/Diffusion-Page-Reranking-aided-Dense-Retrieval-for-RAG-/blob/main/Python-Server/RAG_evaluation_Dataset.csv
https://github.com/sai0499/Diffusion-Page-Reranking-aided-Dense-Retrieval-for-RAG-/blob/main/Python-Server/RAG_evaluation_Dataset.csv


Method nDCG@5 nDCG@10 nDCG@20 MRR Recall@5 Recall@10 Recall@20

BM25 0.68 0.72 0.75 0.65 0.60 0.80 0.92
Dense Retrieval (no rerank) 0.82 0.85 0.88 0.88 0.90 0.94 0.96

+ Diffusion Re-Ranking 0.90 0.93 0.95 0.95 0.94 0.97 0.99

Table 5
Comparison of retrieval performance: BM25 vs. Dense-NoRerank vs. Dense-Rerank.

This improvement stems from the Personalized PageR-
ank diffusion over the dense-embedding graph: Clus-
ter promotion: Semantically coherent clusters of chunks
mutually reinforce each other, raising their rank. Noise
suppression: Isolated or tangential hits receive little diffu-
sion signal and therefore drop down the list. As a result,
Dense-Rerank not only boosts the presence of highly rel-
evant documents at top positions (driving up nDCG and
MRR) but also enhances overall recall within the critical
early ranks.

4.5.3. End-to-End Generation Quality (RQ3)

The improvements in automatic metrics mirror our re-
trieval findings (RQ2): Faithfulness and Helpfulness:
Higher ROUGE-L and BERTScore for Dense-Rerank in-
dicate more accurate and relevant content generation,
thanks to the superior top-K retrieval. Retrieval →
Generation Link: RQ2 showed that diffusion reranking
promotes centrally relevant chunks; RQ3 demonstrates
that feeding those higher-quality chunks into the LLM
yields outputs that better match reference texts (ROUGE-
L) and higher semantic overlap (BERTScore). Fluency:
We observed similar fluency across all three systems (not
shown), as fluency is primarily governed by the pre-
trained LLM rather than the retrieval backend. Thus,
the end-to-end generation quality gains can be directly
attributed to the gains in retrieval effectiveness.

Method ROUGE-L BERTScore

BM25 0.46 0.68
Dense Retrieval (no rerank) 0.74 0.79

+ Diffusion Re-Ranking 0.84 0.86

Table 6
Automatic generation-quality metrics for end-to-end RAG
systems.

5. Conclusion
We presented Diffusion-Aided RAG, a novel pipeline
that couples dense retrieval with graph-based diffusion
reranking to improve the precision and contextual co-
herence of Retrieval-Augmented Generation systems. By

constructing a semantic similarity graph over the top-𝑘
candidate chunks and applying a personalized PageRank
diffusion, our method consistently boosts early-rank re-
trieval metrics (nDCG@5, MRR) and broad recall (R@20),
translating directly into higher ROUGE-L and BERTScore
on end-to-end QA generation. The framework is efficient
enough for real-time applications, relies on open-source
components (Milvus, CLIP, Gemini), and demonstrates
robustness across both synthetic and external query sets.

5.1. Limitations
The current Diffusion-Aided RAG framework, while
demonstrating significant improvements in retrieval ef-
fectiveness and generation quality, exhibits several crit-
ical limitations that warrant careful consideration for
broader deployment and cross-linguistic applications.
The most pronounced limitation concerns hyperparame-
ter sensitivity, particularly regarding the damping factor
𝛼 = 0.85 employed in the personalized PageRank diffu-
sion process. This parameter, borrowed from the canon-
ical PageRank algorithm, was empirically validated on
the OVGU academic dataset but may exhibit suboptimal
performance across different domains or linguistic con-
texts. The choice of K = 20 candidate chunks for final
context formation, while computationally efficient for
maintaining sub-100ms response times, represents an-
other domain-specific optimization that lacks theoretical
grounding for universal applicability.

The system’s architectural dependencies introduce
additional constraints that become particularly prob-
lematic when considering cross-linguistic adaptation.
The reliance on the openai/clip-vit-base-patch32 embed-
ding model, which produces 512-dimensional vectors
optimized primarily for English text, creates a funda-
mental bottleneck for multilingual applications. This
model’s training corpus exhibited limited exposure to
non-English languages, potentially compromising seman-
tic representation quality for languages with different
morphological complexity, syntactic structures, or cul-
tural contexts. The IVF_FLAT index configuration with
nlist=128 in the Milvus-Lite vector store, while adequate
for the current academic dataset, may require signifi-
cant recalibration for larger or more diverse document
collections.

The intent classification module, despite achieving



remarkable 99.88% accuracy on synthetic data, reveals
brittleness when confronted with real-world linguistic
variations. The LoRA-fine-tuned RoBERTa-base model,
optimized with rank r=8 and scaling factor 𝛼=16, demon-
strated perfect performance on external test data but
this evaluation was conducted within a controlled aca-
demic environment. The model’s capacity to handle code-
switching scenarios, dialectal variations, colloquial ex-
pressions, or domain-specific terminology beyond the
training distribution remains largely unexplored. This
limitation becomes particularly acute when considering
deployment in multilingual contexts where users may
naturally alternate between languages or employ cultur-
ally specific linguistic patterns.

The evaluation methodology itself presents limitations
that constrain the generalizability of the reported perfor-
mance gains. The OVGU-specific dataset, while method-
ologically sound, represents a narrow slice of potential
application domains. The evaluation focused primarily
on factual, short-answer questions typical of academic
environments, leaving unexplored the system’s perfor-
mance on complex, multi-document synthesis tasks, com-
parative analyses, explanation [27] or creative queries
that require deeper semantic understanding. The auto-
matic evaluation metrics, while comprehensive, may not
fully capture the nuanced quality aspects that human
users would prioritize in real-world applications.

Performance implications for other languages, differ-
ent than English, like an Italian adaptation would likely
manifest as reduced retrieval accuracy, increased prepro-
cessing latency due to morphological analysis require-
ments, and higher computational resource demands for
maintaining language-specific models and dictionaries.
Conservative estimates suggest a 10-15% reduction in
initial retrieval effectiveness due to embedding model
limitations, with proportional impacts on end-to-end gen-
eration quality. The need for specialized Italian morpho-
logical analyzers, lemmatization pipelines, and culturally
appropriate personalization [28] would substantially in-
crease system complexity and deployment costs.

The path forward for Italian adaptation requires sys-
tematic attention to multilingual embedding integration,
morphological preprocessing pipelines, cultural local-
ization strategies, and comprehensive evaluation frame-
works designed specifically for Italian linguistic and
cultural contexts [29, 30]. These challenges highlight
the critical importance of language-specific optimiza-
tion in developing truly effective multilingual retrieval-
augmented generation systems.

6. Acknowledgments
This research is partially funded by PNRR project FAIR -
Future AI Research (PE00000013), Spoke 6 - Symbiotic AI

(CUP H97G22000210007) under the NRRP MUR program
funded by the NextGenerationEU.

References
[1] A. Kucharavy, Fundamental limitations of genera-

tive llms, in: Large Language Models in Cyberse-
curity: Threats, Exposure and Mitigation, Springer
Nature Switzerland Cham, 2024, pp. 55–64.

[2] P. Lewis, E. Perez, A. Piktus, F. Petroni,
V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.
Yih, T. Rocktäschel, et al., Retrieval-augmented
generation for knowledge-intensive nlp tasks,
Advances in neural information processing systems
33 (2020) 9459–9474.

[3] E. M. Voorhees, Natural language processing and
information retrieval, in: International summer
school on information extraction, Springer, 1999,
pp. 32–48.

[4] V. Karpukhin, B. Oguz, S. Min, P. S. Lewis, L. Wu,
S. Edunov, D. Chen, W.-t. Yih, Dense passage re-
trieval for open-domain question answering., in:
EMNLP (1), 2020, pp. 6769–6781.

[5] K. Guu, K. Lee, Z. Tung, P. Pasupat, M. Chang,
Retrieval augmented language model pre-training,
in: International conference on machine learning,
PMLR, 2020, pp. 3929–3938.

[6] S. Wang, S. Zhuang, G. Zuccon, Bert-based dense
retrievers require interpolation with bm25 for effec-
tive passage retrieval, in: Proceedings of the 2021
ACM SIGIR international conference on theory of
information retrieval, 2021, pp. 317–324.

[7] X. Ma, H. Fun, X. Yin, A. Mallia, J. Lin, Enhancing
sparse retrieval via unsupervised learning, in: Pro-
ceedings of the Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval in the Asia Pacific Region, 2023,
pp. 150–157.

[8] Y. Li, Z. Liu, C. Xiong, Z. Liu, More robust dense
retrieval with contrastive dual learning, in: Pro-
ceedings of the 2021 ACM SIGIR International Con-
ference on Theory of Information Retrieval, 2021,
pp. 287–296.

[9] M. Donoser, H. Bischof, Diffusion processes for
retrieval revisited, in: Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
2013, pp. 1320–1327.

[10] Y. Qu, Y. Ding, J. Liu, K. Liu, R. Ren, W. X. Zhao,
D. Dong, H. Wu, H. Wang, Rocketqa: An optimized
training approach to dense passage retrieval for
open-domain question answering, arXiv preprint
arXiv:2010.08191 (2020).

[11] milvus-io, Milvus: Open Source Vector Database,
2025. URL: https://github.com/milvus-io/milvus.

https://github.com/milvus-io/milvus


[12] Google DeepMind, Gemini Pro, 2025. URL: https:
//deepmind.google/models/gemini/pro/.

[13] Pallets Projects, Flask Documentation (stable), 2025.
URL: https://flask.palletsprojects.com/en/stable/.

[14] A. Radford, J. W. Kim, T. Xu, G. Brockman,
C. McLeavey, I. Sutskever, Robust speech recog-
nition via large-scale weak supervision, 2022. URL:
https://arxiv.org/abs/2212.04356. doi:10.48550/
ARXIV.2212.04356.

[15] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov,
Roberta: A robustly optimized BERT pretraining
approach, CoRR abs/1907.11692 (2019). URL: http:
//arxiv.org/abs/1907.11692. arXiv:1907.11692.

[16] Google AI for Developers, Gemini API Reference,
2025. URL: https://ai.google.dev/api?authuser=2&
lang=python.

[17] Docling Team, Docling, https://github.
com/docling-project/docling, 2024. URL:
https://arxiv.org/abs/2408.09869, arXiv preprint
arXiv:2408.09869.

[18] OpenAI, CLIP ViT-B/32 Model, 2025. URL: https:
//huggingface.co/openai/clip-vit-base-patch32.

[19] NetworkX Developers, NetworkX: Network Analy-
sis in Python, 2025. URL: https://networkx.org/.

[20] LangChain, Pypdfloader integration,
https://python.langchain.com/docs/integrations/
document_loaders/pypdfloader/, 2024. Accessed:
2025-06-14.

[21] LangChain, Charactertextsplitter — langchain
api reference, https://python.langchain.com/api_
reference/text_splitters/character/langchain_text_
splitters.character.CharacterTextSplitter.html, 2024.
Accessed: 2025-06-14.

[22] LangChain, Faiss integration, https://python.
langchain.com/docs/integrations/vectorstores/
faiss/, 2024. Accessed: 2025-06-14.

[23] H. Face, S. Transformers, all-minilm-l6-v2,
https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2, 2021. Accessed: 2025-06-14.

[24] M. AI, Llama 2 7b, https://huggingface.co/
meta-llama/Llama-2-7b, 2023. Accessed: 2025-06-
14.

[25] M. Polignano, M. de Gemmis, G. Semeraro, Un-
raveling the enigma of SPLIT in large-language
models: The unforeseen impact of system prompts
on llms with dissociative identity disorder, in:
F. Dell’Orletta, A. Lenci, S. Montemagni, R. Sprug-
noli (Eds.), Proceedings of the Tenth Italian Confer-
ence on Computational Linguistics (CLiC-it 2024),
Pisa, Italy, December 4-6, 2024, volume 3878 of
CEUR Workshop Proceedings, CEUR-WS.org, 2024.
URL: https://ceur-ws.org/Vol-3878/84_main_long.
pdf.

[26] grafstor, Simple Dialogs for Chatbot, 2025.

URL: https://www.kaggle.com/datasets/grafstor/
simple-dialogs-for-chatbot?resource=download.

[27] M. Polignano, C. Musto, R. Pellungrini, E. Purificato,
G. Semeraro, M. Setzu, Xai.it 2024: An overview
on the future of AI in the era of large language
models, in: M. Polignano, C. Musto, R. Pellungrini,
E. Purificato, G. Semeraro, M. Setzu (Eds.), Proceed-
ings of the 5th Italian Workshop on Explainable
Artificial Intelligence, co-located with the 23rd In-
ternational Conference of the Italian Association
for Artificial Intelligence, Bolzano, Italy, Novem-
ber 26-27, 2024, volume 3839 of CEUR Workshop
Proceedings, CEUR-WS.org, 2024, pp. 1–10. URL:
https://ceur-ws.org/Vol-3839/paper0.pdf.

[28] F. Manco, D. Roberto, M. Polignano, G. Semeraro,
JARVIS: adaptive dual-hemisphere architectures for
personalized large agentic models, in: Adjunct
Proceedings of the 33rd ACM Conference on User
Modeling, Adaptation and Personalization, UMAP
Adjunct 2025, New York City, NY, USA, June 16-19,
2025, ACM, 2025, pp. 72–76. URL: https://doi.org/
10.1145/3708319.3733674. doi:10.1145/3708319.
3733674.

[29] P. Basile, E. Musacchio, M. Polignano, L. Siciliani,
G. Fiameni, G. Semeraro, Llamantino: Llama 2 mod-
els for effective text generation in italian language,
CoRR abs/2312.09993 (2023). URL: https://doi.org/
10.48550/arXiv.2312.09993. doi:10.48550/ARXIV.
2312.09993. arXiv:2312.09993.

[30] M. Polignano, P. Basile, G. Semeraro, Advanced
natural-based interaction for the italian language:
Llamantino-3-anita, CoRR abs/2405.07101 (2024).
URL: https://doi.org/10.48550/arXiv.2405.07101.
doi:10.48550/ARXIV.2405.07101.
arXiv:2405.07101.

A. Online Resources
The source code for the overall implementation for our
project can be access through our GitHub repository.

• GitHub

https://deepmind.google/models/gemini/pro/
https://deepmind.google/models/gemini/pro/
https://flask.palletsprojects.com/en/stable/
https://arxiv.org/abs/2212.04356
http://dx.doi.org/10.48550/ARXIV.2212.04356
http://dx.doi.org/10.48550/ARXIV.2212.04356
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://ai.google.dev/api?authuser=2&lang=python
https://ai.google.dev/api?authuser=2&lang=python
https://github.com/docling-project/docling
https://github.com/docling-project/docling
https://arxiv.org/abs/2408.09869
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-base-patch32
https://networkx.org/
https://python.langchain.com/docs/integrations/document_loaders/pypdfloader/
https://python.langchain.com/docs/integrations/document_loaders/pypdfloader/
https://python.langchain.com/api_reference/text_splitters/character/langchain_text_splitters.character.CharacterTextSplitter.html
https://python.langchain.com/api_reference/text_splitters/character/langchain_text_splitters.character.CharacterTextSplitter.html
https://python.langchain.com/api_reference/text_splitters/character/langchain_text_splitters.character.CharacterTextSplitter.html
https://python.langchain.com/docs/integrations/vectorstores/faiss/
https://python.langchain.com/docs/integrations/vectorstores/faiss/
https://python.langchain.com/docs/integrations/vectorstores/faiss/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-2-7b
https://ceur-ws.org/Vol-3878/84_main_long.pdf
https://ceur-ws.org/Vol-3878/84_main_long.pdf
https://www.kaggle.com/datasets/grafstor/simple-dialogs-for-chatbot?resource=download
https://www.kaggle.com/datasets/grafstor/simple-dialogs-for-chatbot?resource=download
https://ceur-ws.org/Vol-3839/paper0.pdf
https://doi.org/10.1145/3708319.3733674
https://doi.org/10.1145/3708319.3733674
http://dx.doi.org/10.1145/3708319.3733674
http://dx.doi.org/10.1145/3708319.3733674
https://doi.org/10.48550/arXiv.2312.09993
https://doi.org/10.48550/arXiv.2312.09993
http://dx.doi.org/10.48550/ARXIV.2312.09993
http://dx.doi.org/10.48550/ARXIV.2312.09993
http://arxiv.org/abs/2312.09993
https://doi.org/10.48550/arXiv.2405.07101
http://dx.doi.org/10.48550/ARXIV.2405.07101
http://arxiv.org/abs/2405.07101
https://github.com/sai0499/Diffusion-Page-Reranking-aided-Dense-Retrieval-for-RAG-.git

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 System Architecture
	3.2 Corpus Construction and Indexing
	3.3 Core Processing Pipeline
	3.4 RAG Search: Dense Retrieval and Diffusion Reranking
	3.5 Web Search Augmentation
	3.6 LLM Prompting and Response Generation

	4 Experiment
	4.1 Experimental Setup
	4.1.1 Dataset Construction
	4.1.2 Implementation Details

	4.2 Intent Classification Fine-Tuning
	4.3 Baselines and System Variants
	4.4 Evaluation Metrics
	4.4.1 Intent Classification
	4.4.2 Retrieval Performance
	4.4.3 End-to-End Response Quality

	4.5 Results and Analysis
	4.5.1 Intent Classification Performance (RQ1)
	4.5.2 Retrieval Effectiveness (RQ2)
	4.5.3 End-to-End Generation Quality (RQ3)


	5 Conclusion
	5.1 Limitations

	6 Acknowledgments
	A Online Resources

