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Abstract

We present the first meta-evaluation of Automatic Machine Translation Evaluation (AMTE) metrics between Italian and South
Tyrolean German, a low-resourced standard variety of German. This minor German variety is recognised as a co-official
language at the local level and is used by the local public administration and legislature. We evaluate metric agreement
with human judgement across translation quality levels, using a dataset of bilingual machine-translated decrees annotated
with human-curated error tags. Our findings show that embedding-based metrics perform best for evaluating high-quality
translations, while learned neural metrics correlate more strongly with human judgments on lower-quality ranges. We also
expose a persistent bias in AMTE against minor language varieties and make suggestions about the design of linguistic

resources for envisaged custom metric devolopment.
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1. Introduction

South Tyrolean German is a minor standard variety of
German with a co-official status in the Italian province
of Bolzano/Bozen (South Tyrol). The 350,000 German-
speaking citizens in South Tyrol have the right to com-
municate with and access public services in their native
language at the local level. Given the increasing integra-
tion of Al technologies into everyday life, this context
underscores the need of developing bilingual NLP tools
tailored to the South Tyrolean variety of German and
use cases, with Machine Translation (MT) one of the
most pressing fields of research. However, it is well doc-
umented that the performance of NLP systems for minor
language varieties significantly lags behind both their
major counterparts and high-resource languages [1].
Interest in generating translations into minor language
varieties is growing, yet the lack of validated evalua-
tion metrics hampers accurate monitoring of achieved
progress. Most related studies still rely on inadequate, su-
perseded lexical-overlap methods [2]. While the research
community has made efforts to adapt neural metrics for
under-resourced and dialectal varieties [3, 4], the develop-
ment of robust evaluation methods is complicated by the
absence of high-quality, sufficiently large labeled datasets
— an issue common to all under-resourced varieties [5].
Knowles et al. [6] have called for a comparative evalu-
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generation evaluation, specialized communication

ation, as they argue that metrics assign lower scores to
minor lexical variants even when no change in meaning
exists. In addition, inefficient tokenization methods lead
to suboptimal segmentation and reduced adaptability for
under-resourced languages [7].

Prior experiments with adaptive MT for South Tyrol
[8, 9] have also employed metrics based on lexical over-
lap despite their known underperformance compared to
neural metrics. This reliance stems from the lack of a
thorough, localized evaluation of more advanced metric
paradigms and makes a compelling case for a dedicated
meta-evaluation study of existing solutions applicable to
the South Tyrolean context.

This work presents the first such MT meta-evaluation
study of metrics for the Italian-South Tyrolean German
language pair. We conduct our analysis on MT@BZ', a
manually error-annotated corpus of legal texts covering
both translation directions, to assess the reliability of
current automatic evaluation metrics.

1.1. Automatic Machine Translation
Evaluation

Human evaluation remains the gold standard method
for assessing MT quality outputs. However, because hu-
man annotation is time-consuming, resource-intensive
and requires high domain expertise, Automatic Machine
Translation Evaluation (AMTE) metrics have garnered
increasing attention. These metrics aim to estimate trans-
lation quality by comparing a system-generated candi-
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date translation either to the source segment” in the other
language, to a human-produced reference translation in
the same language, or to both. In scenarios where the out-
put of only one translation system is available, as in this
case, a so-called segment-level evaluation is carried out.
It consists of "evaluating metrics based on their ability to
rank segments in the same order as human judgments"
[10]. The effectiveness of such metrics is commonly mea-
sured using ranking correlation coefficients, under the
assumption that a reliable metric should consistently as-
sign higher scores to translations deemed superior by
human annotators [11].

Existing metrics can be categorized into three main

types:

« String-based: this approach quantifies transla-
tion quality by measuring lexical overlap with
one or more reference translations. These meth-
ods operate at the surface level, comparing exact
matches of word or character sequences between
the candidate and the reference.

+ Embedding-based: these metrics leverage con-
textualized token embeddings from pretrained
language models to compute semantic similarity
between the candidate translation and the ref-
erence. Semantic alignment is evaluated at the
token level using cosine similarity, followed by
an F-score aggregation procedure.

« Learned: these metrics are based on transformer
architectures that have been fine-tuned via su-
pervised learning to replicate human judgments
of machine translation quality, typically using
a regression objective to provide a continuous
score.

2. Motivation

2.1. Social and Linguistic Background of
South Tyrol

South Tyrolean German is the standard variety of Ger-
man used in the Autonomous Province of Bolzano/Bozen
(South Tyrol) in Northern Italy. In South Tyrol, German
is a recognized minority language, co-official with Ital-
ian. Public administration offices are legally required to
use German when interacting with the German-speaking
population (Presidential Decree No. 670/1972, Art. 100),
which makes up the large majority of South Tyrol’s pop-
ulation (69%)’. Consequently, all administrative docu-

*In the field of MT, a segment is defined as the minimal translation
unit, which in this study corresponds to a sentence.

3See  the latest census data: https://assets-eu-01.
kc-usercontent.com/b5376750-8076-01cf-17d2-d343e29778a7/
5deec178-b2a3-4e2d-8795-d37635c7e0f7/pressnote_1160209_
mit56_2024.pdf

ments, local legislation, and materials intended for the
general public - such as the websites of local public in-
stitutions — must be available not only in the national
language Italian but also in the minority language Ger-
man’.

This multilingual institutional language regime is
largely implemented through translation between Italian
and German or vice-versa. National legislation is drafted
in Italian and any implementations at local level create
the need for translation into German. Following quotas
in public employment, about two thirds of public admin-
istration staff is German-speaking. Consequently, many
legal and administrative texts are now originally drafted
in German. While the Italian and German version of, for
example, a local law are both official, in case of diverging
interpretation the Italian version prevails (Presidential
Decree No. 670/1972, Art. 99). This means that a trans-
lated text can become the legally binding version. Given
the growing use of machine translation, this holds true
also for machine-translated or post-edited texts.

The impressive level of fluency of MT-generated texts
poses a challenge for fair quality assessment of MT sys-
tems even for human evaluators — especially for those
lacking specialized training, who may be outperformed
by automated neural metrics [12]. In South Tyrolean
public offices, where translation-related tasks are often
performed by non-specialists, the rising adoption of MT
- frequently without adherence to scientific evaluation
protocols [13] - carries the risk of overestimating produc-
tivity gains. Without systematic, targeted performance
monitoring, critical errors may go unnoticed. As high-
lighted in the error analysis of a machine-translated legal
corpus [14], MT systems often struggle with local legal
terminology and are prone to interference from other
legal systems using German. For example, kommunale
Steuer (municipal tax) is never used in South Tyrol as it
would in Germany. The South Tyrolean term for "mu-
nicipal tax" is Gemeindesteuer. Such errors can severely
compromise translation quality and usability. In high-
stakes domains like the legal one, fluency is secondary
to semantic precision and legal appropriateness. Critical
accuracy errors can distort meaning, making translated
laws unpublishable or even harmful. Consequently, there
is a clear need for MT evaluation frameworks that attend
to the specific requirements of the South Tyrolean ad-
ministration and population.

2.2. Toward the Development of Custom
Metrics

The well-documented challenges of adapting NLP appli-
cations to minor language varieties [1] also apply to the

“There is a third official language, Ladin, spoken by about 20,000
South Tyroleans. We will not deal with Ladin in this paper.
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development of automatic evaluation metrics. Language
models are pre-trained onto large-scale corpora where
major language varieties contribute a disproportionately
larger amount of training signal [15], often without ex-
plicit annotation of variety or dialect tag. This results in
biased representations and undermines the fairness and
reliability of evaluation metrics for underrepresented va-
rieties [16]. Current literature has shown that intensive
continued pre-training [16] and the use of high-quality,
human-annotated datasets spanning a range of transla-
tion quality levels [4] are essential to improving evalua-
tion performances. Yet, these strategies remain largely
impractical at present due to the significant data and
resource demands they entail.

Also, given the high costs of constructing fine-grained,
manually annotated datasets, one wants to be sure that
the compilation of structured and detailed linguistic re-
sources is empirically justified. While Amrhein et al. [17]
argue that the inclusion of reference translations gen-
erally improves evaluation reliability, the behavior of
existing metrics remains inconsistent, occasionally even
counterintuitive. For example, some metrics have been
observed to disregard the reference altogether [18], or to
produce high scores even when the source text is omitted
entirely [6, 10]. As a result, a comprehensive assessment
of existing solutions is needed not only in terms of the
identification of the best suited metrics to the context un-
der study, but also to lay the groundwork for envisaged
future metric development.

Moreover, reliable metrics can also advance generation
tasks. An emerging trend of natural language generation
is to exploit Minimum Bayes Risk (MBR) decoding, which
selects the output hypothesis that minimizes expected
loss according to a utility function defined by a chosen
evaluation metric [19]. This approach can act as a form
of style transfer with a reduction in training costs and
data requirements. However, using the same metric for
both decoding and final evaluation introduces bias, as the
system is optimized to reproduce the metric’s idiosyn-
crasies [20]. Even different but highly correlated metrics
— especially if they are of the same type — can produce
similar biases [21]. Thus, evaluating the robustness of
multiple metric paradigms becomes an essential prereq-
uisite to generating text in South Tyrolean German with
MBR decoding.

3. Challenges of Automatic
Machine Translation Evaluation

Learned metrics have consistently outperformed other
evaluation methods in benchmark competitions such as
the WMT Metrics Shared Task [22]. However, this finding
should not be generalized uncritically. Since neural met-
rics are predominantly fine-tuned on WMT competition

datasets — which represent a limited range of linguistic
diversity and domains - their superiority in more spe-
cialized evaluation scenarios remains open to question.

Knowles et al. [6] raise questions regarding how met-
rics assess terminological variation within language vari-
eties and call for more thorough research on the subject.
Since larger language varieties contribute more training
signal during metric development, studies have observed
that major linguistic variants tend to be rated more favor-
ably than minor linguistic variants, potentially leading
to biased evaluations [16].

Furthermore, analyses of neural metric performance
on non-English language pairs remain limited. As aresult,
the superiority of neural metrics cannot be indiscrim-
inately generalized to all language combinations [23],
with some evidence suggesting that performance may
degrade when English is excluded from the evaluation
[24].

Among the major limitations highlighted in the lit-
erature is the lack of interpretability inherent to many
neural evaluation metrics, largely due to their opaque
scoring mechanisms. Their black-box nature hinders an
assessment of which metrics are best suited for captur-
ing specific linguistic phenomena and complicates the
selection of appropriate metrics for targeted evaluation
tasks [25]. In response, recent research has increasingly
emphasized evaluation methodologies grounded in hu-
man error annotations — particularly those following the
MQM (Multidimensional Quality Metrics) framework —
which offer fine-grained information on translation qual-
ity [12]. These span-level annotations have also been
leveraged as a standardized method for deriving quality
scores (eliminating the need for direct human scoring in
evaluation tasks) [26], and training more interpretable
quality metrics.

Parallel efforts have also turned to linguistically moti-
vated meta-evaluation test suites and controlled exper-
iments designed to probe metric sensitivity to specific
language phenomena [27, 28].

The specialized nature of the legal domain also raises
concerns about the reliability of existing evaluation met-
rics. Zouhar et al. [29] highlight that learned metrics ex-
hibit a performance drop when applied to out-of-domain
data, largely due to their final-stage fine-tuning process.
This suggests that current training data effectively opti-
mizes metrics for specific domains but does not generalize
well beyond them. As a result, extending these evalua-
tion metrics to other domains — such as the legal domain
- may lead to performance degradation compared to the
base model.



4. Methodology

4.1. Problem Definition

We establish two criteria to characterize an effective met-
ric for our use case: the first is absolute agreement, defined
as ranking correct translations higher than incorrect ones.
We also define relative agreement, that is the capability
to rank translations containing critical mistakes lower
than those with milder ones [11].

To operationalize the differentiation, we partition the
dataset for analysis. Absolute agreement is measured
on the Whole Dataset — comprising all segments avail-
able. To measure relative agreement, we subsample only
the segments annotated with at least one mistake, the
Mistake-only Dataset.

4.2. Dataset and Human Scoring

We use the MT@BZ corpus [8], a corpus of machine-
translated decrees. It comprises source, reference and can-
didate translations in both language directions IT—DE
and DE—IT). Each segment has been manually annotated
for translation errors using a custom error taxonomy. Ta-
ble 1 offers a glance into the composition of the corpus for
each language direction. We notice that around 60% of all
segments is correct for both language directions. To gain
further insight, we compute the BLEU score between ref-
erence and candidate sentences. Notably, we find that a
very high number of segments labeled as correct receives
a perfect BLEU score of 100, indicating exact matches
with the reference translations. This outcome has also
been observed by Oliver et al. [9] in similar experiments
on the same data, and is attributed to the repetitive and
formulaic nature of legal language, which often leads to
low lexical and syntactic variability.

To measure correlation across a range of quality levels
(as defined in Section 4.1) in the absence of numerical
quality scores, we assign severity weights to each error
type annotated in the original dataset (see Appendix A).
Given the highly specialized nature of the domain, ex-
perts with competence in the South Tyrolean legal frame-
work and German language varieties were consulted to
define severity levels for each error type. These levels
were established based on both linguistic adequacy and
legislative drafting requirements’. For a detailed qualita-
tive analysis of the corpus mistakes, refer to De Camillis
and Chiocchetti [14].

For example, the South Tyrolean public administration is bound
by law to use the terminology that is being officially validated
by a dedicated Terminology Commission (Presidential Decree No.
574/1988, Art. 6) and to adopt gender-neutral language (Provin-
cial Law No. 51/2010). These constraints are therefore essential
quality aspects when translating official documents into this minor
language variety of German.

In this manner, we can lay out a hierarchy of
type-of-error severity and derive a more granular
quality ranking. We apply a penalty for each error in a
segment, equal to the severity weight assigned to that
error type, according to the Linear Raw Scoring Model
presented by Lommel et al. [30]. The sum of penalties
is then deducted from a total of 100 and becomes the
human score. This score reflects both the presence
and severity of translation errors, thereby enabling the
computation of rank-based correlation indices between
human judgments and automatic metric outputs.

Segments IT-DE DE—IT
Error-annotated 639 622
Exact matches 741 412
Other correct 129 475
Total segments 1,509 1,509

Table 1

Composition of MT@BZ dataset. Error-annotated segments
indicate the number of translations that have been labeled
as containing at least one mistake. Exact matches indicate
the number of correct translations that are identical to the
reference. Other correct segments indicate the number of
correct translations that are different from the reference.

4.3. Setup of Selected Metrics

This section presents the evaluation metrics employed
in our study, with details on the tested methods and
models provided in Table 2. Following best practices for
replicability as recommended by Zouhar et al. [42] for
Comet-suite metrics, we include hash codes and model
identifiers in the footnotes of the present section.

String-based Metrics

BLEU [31] measures modified n-gram precision with
a brevity penalty. chrF [34] computes overlap over
character-level n-grams, offering sensitivity to morpho-
logical and orthographic variation. Finally, TER [39] es-
timates the minimum number of edit operations required
to transform the candidate into the reference, approxi-
mating post-editing effort.

Embedding-based Metrics

We utilize the BERTScore framework® [33], which uses
contextual embeddings from pre-trained language mod-
els to compute semantic similarity. The framework al-
lows for model selection. Hash identifiers have been

®https://github.com/Tiiiger/bert_score



Metric Type Source  Reference Error span  Citation
BLEU String-based X v X [31]
BLEURT Learned X v X [32]
BERTScore Embedding-based X v X [33]
chrF String-based X v X [34]
COMET-22-DA Learned v v X [35]
COMET-Kiwi-DA Learned v X X [36]
COMET-KiwiXL-DA  Learned v X v [37]
MetricX-24-Hybrid Learned v v v [38]
TER String-based X v X [39]
UNITE Learned v v X [40]
XCOMETXL-DA Learned v v v [41]

Table 2

Details about the evaluation models and methods considered in the study, in alphabetical order.

generated together with the scores and are provided in
the footnotes. In our experiments, we evaluate four en-
coder backbones: bert-base-multilingual’ (which is the
default model), roberta-large-mnlig, deberta-xlarge-
mnli’ and bart-large-mnli'’.

In Table 3, we report the results under their respective
model denominations, matched with the aggregated F1
score. We also compute precision and recall individually
to highlight asymmetric contributions to the similarity
assessment, which will be commented in Section 5. Pre-
cision measures how many of the candidate’s tokens are
present in the reference, while recall captures how well
the reference tokens are matched by the generated can-
didate.

Learned Metrics

We choose learned metrics trained under different input
configurations.

We begin with reference-based metrics, which incorpo-
rate the reference translation during both training and
inference. We select COMET-22-DA"'[35] and BLEURT
[32], which have been fine-tuned simply using quality
scores from human annotators.

We also consider source-based metrics (also called Qual-
ity Estimation or QE metrics), which are trained without
access to reference translations. Instead, they learn to pre-
dict human quality scores solely from the source sentence
and the machine-generated output. We include both
COMET-Kiwi-DA" [36] and its larger variant COMET-

"bert-base-multilingual-cased_L9_no-
idf_version=0.3.12(hug_trans=4.46.2)_fast-tokenizer
8roberta-large-mnli_L19_no-idf_version=0.3.12(hug_trans=4.51.3)
“microsoft/deberta-xlarge-mnli_L40_no-
idf_version=0.3.12(hug_trans=4.51.3)
0facebook/bart-large-mnli_L11_no-
idf_version=0.3.12(hug_trans=4.51.3)
Python3.8.10|Comet2.2.2|fp32|Unbabel/wmt22-comet-da|1
12Python3.8.10|Comet2.2.2|fp32|Unbabel/wmt22-cometkiwi-da|1

KiwiXL-DA" [37], which builds on the same architec-
ture but differs in model capacity.

The unified approach combines both the source and
the reference to exploit multi-task interaction. We assess
UNITE" [40]. It jointly leverages the source and the
reference as separate input streams during training, then
incorporating a last layer to fuse the decomposed scores
into the holistic one. We report scores for source (src)
and reference (ref) decompositions.

We also include error-span metrics, namely
XCOMETXL-DA" [41], MetricX-24-Hybrid-Large
and its larger configuration MetricX-24-Hybrid-XL
[38]. These metrics include a training phase based
on error-span labels, according to the MQM error
taxonomy. They are trained to predict error spans
alongside a penalty score. XCometXL-DA is a hybrid
metric that provides additional scores based on four
decomposed dimensions: src, ref, unified approach and
MQM annotations. The holistic score is then produced
by ensembling the four sub-scores via a forward pass
that establishes aggregation weights. Instead, the
MetricX model suite only provides a single additional
decomposed score which includes only the source in the
evaluation.

Finally, we explore a variant of XCOMETXL quantized
to 8 bits'®, motivated by the hypothesis put forward in
Zouhar et al. [42] that lower precision approximations
of large metrics can maintain correlation with human
judgments while significantly reducing inference costs.

4.4. Meta-Evaluation

In Table 3, we report Accuracy (Acc) [11], a measure
computed through pairwise comparisons across the test
set. It quantifies the proportion of pairs for which the

3Python3.8.10|Comet2.2.2|fp32|Unbabel/wmt22-cometkiwiXL-da|1
14Python3.8.10|Comet2.2.2|fp32|Unbabel/unite-mup|1
15Python3.8.10|Comet2.2.3|fp32|Unbabel/ XCOMET-XL|1
16Python3.8.10|Comet2.2.2|qint8|Unbabel XCOMET-XL|1



evaluation metric produces the same relative ordering
as the human gold standard (concordant), versus those
where the ordering is incorrect (discordant). We follow
Deutsch et al. [43] by using a variant of Accuracy ad-
justed for tie calibration by artificially creating ties from
continuous scores. This procedure is needed in the light
of the high number of rank ties stemming from human
score fabrication. The Acc value ranges from 0 to 1.

We also adopt Spearman’s correlation (Rho) (ranging
from -1 to 1). It offers robustness to outliers and allows to
capture rank-based monotonic relationships even across
the markedly different score distributions observed in
the metrics evaluated [3].

We decide not to use Pearson’s correlation because it
assumes a linear relationship between the distributions
of the two score groups [43]. The proportional sever-
ity weights we assign to different error types are not
expected to be linearly replicated by metric outputs.

5. Results

We apply meta-evaluation measures on both the Whole
Dataset and the Mistake-only Dataset. This addresses
the need to adequately test the metrics on the two
criteria that have been established when defining the
problem in Section 4.1: absolute and relative agreement.
In Table 3, results are accordingly structured under
two main sections, which separately report metric
performance under each evaluation criterion. For
metrics that generate holistic scores by aggregating
subscores algorithmically, we report the holistic score in
bold, while single decomposed scores are provided in
regular font.

Metric paradigm performance varies across qual-
ity ranges. Our results reveal a widely different perfor-
mance pattern across metric paradigms when evaluated
on the Whole Dataset versus the Mistake-only Dataset.
Surprisingly, both string-based and embedding-based
metrics outperform learned metrics when evaluated on
the Whole Dataset. We explain this with the argument
that string-based metrics — being rule-based - can reli-
ably detect and reward the high sample of exact matches
with the reference. Embedding-based metrics also bene-
fit from their ability to capture lexical overlap at a sub-
word or token level, recognising meaning even when
the wording differs. We attribute the underperformance
of learned metrics primarily to the inherent nature of
their regression-based scoring. Unlike rule-based metrics
that produce deterministic outputs, learned metrics rely
on regression functions that approximate scores based
on distributional patterns in the training data. This can
result in unexpected behavior - for instance, candidate

translations identical to the reference may not receive
the maximum score, or scores may fall outside the valid
range of 0 to 1 as in Comet models (requiring post-hoc
clipping). This behavior is consistent with prior observa-
tions about learned metrics’ underperformance on high-
quality translations, as noted by Agrawal et al. [44].
However, the trend reverses in the Mistake-only
Dataset: here, when including the reference, learned
metrics consistently outperform other metric types,
regardless of the statistical measure used. This suggests
that their modeling power becomes more effective in
lower-quality bands, where surface-level matches are
less common and mistakes have to be properly identified
and penalized. Despite this regained advantage in the
Mistake-only setting, the overperformance margins
of most learned metrics remain tight and agreement
levels insufficient for a reliable quality evaluation. This
suggests that there is still room for improvement -
especially as far as smaller-size metrics are concerned.

Mind the reference. Disaggregating the performance
of learned metrics by input type offers valuable insights
into which linguistic resources most effectively con-
tribute to accurate evaluation. Considering the Mistake-
only Dataset, reference-based scores surpass both source-
based and error-span counterparts for COMET, UNITE
and MetricX families. Interestingly, for metrics built on
the unified approach (such as UNITE and XCOMETXL),
the inclusion of both source and reference appears bene-
ficial. While the reference remains the primary driver of
correlation, incorporating the source provides a modest
boost to overall score agreement. This suggests that uni-
fied models, which incorporate additional layers to weigh
and integrate information streams from both inputs into
the holistic score, may be better suited to capture certain
error types that are only apparent when the source is
considered.

In general, while source-based metrics trail behind
other learned metric types, they can outperform
embedding-based metrics counting on reference
translations, especially if we consider models with larger
capacity (MetricX-24-XL-QE, COMET-KiwiXL-DA and
XCOMETXL-src).

Error-span metrics are misaligned. We assess the
usefulness of error-span annotations in comparison to
other linguistic signals. XCOMETXL-DA-mqm is the only
available decomposed score based exclusively on MQM
error span identification. Considering the Mistake-only
Dataset, we observe a drop compared to related subscores
of the same metric as well as to the smaller configuration
of the same metric (COMET-22-DA). This failure may
be attributable to a misalignment between the MOM



| WHOLE DATASET

‘ MISTAKE-ONLY DATASET

Type Metric IT—DE DE—IT IT—DE DE—IT

Acc Rho Acc Rho Acc Rho Acc Rho
String-based BLEU 0.777  0.768  0.668 0.694 | 0.509 0.157 0.552  0.250
String-based | chrF 0.775  0.761  0.717 0.688 | 0.525 0.217 0.529 0.179
String-based TER 0.776 ~ 0.771 0.720  0.703 | 0.505 0.175 0.522 0.174
Embedding bert-base-multilingual | 0.781 0.724 0.715 0.724 | 0.527 0.267 0.549  0.289
Embedding bart-large-mnli 0.780 0.773 0.755 0.728 | 0.529 0.254 0.530 0.213
Embedding deberta-xlarge-mnli 0.779 0771 0739 0728 | 0.526 0.258 0.533  0.227
Embedding roberta-large-mnli 0.771  0.758 0.760  0.738 | 0.524 0.252 0.524  0.221
Learned BLEURT 0.706  0.686 0.660 0.512 | 0.488 0.123  0.551  0.255
Learned COMET-22-DA 0.670  0.680 0.665 0.686 | 0.565 0.375 0.566  0.332
Learned COMET-Kiwi-DA 0.441 0.242  0.401 0.178 | 0.474 0.116  0.520  0.219
Learned COMET-KiwiXL-DA 0.411 0.221 0.403 0.177 | 0.540 0.293 0.545 0.250
Learned MetricX-24-Large 0.615 0.582 0.586 0.548 | 0.538 0.272  0.592  0.363
Learned MetricX-24-Large (src) 0.418 0.234 0.405 0.175 | 0.495 0.143 0.523  0.168
Learned MetricX-24-XL 0.607 0.612 0.586 0.535 0.536  0.272 0.612  0.419
Learned MetricX-24-XL (src) 0.463  0.554 0.409 0.189 | 0.494 0.143 0.554 0.254
Learned UNITE 0.711 0.691 0.654 0.644 | 0.527 0.240 0.558  0.265
Learned UNITE (src) 0.407 0.194 0.398 0.187 | 0.475 0.091 0.518  0.152
Learned UNITE (ref) 0.745 0.717  0.660 0.664 | 0.529 0.248 0.563  0.285
Learned XCOMETXL-DA 0.508 0.426 0.547 0.459 | 0.582 0.436 0.616 0.496
Learned XCOMETXL-DA (src) 0.406  0.177  0.415 0.190 | 0.551 0.343 0.595 0.408
Learned XCOMETXL-DA (ref) 0.544 0.464 0.553 0.489 | 0.579 0.434 0.618 0.491
Learned XCOMETXL-DA (MQM) 0.530  0.455 0.586 0.519 | 0.547 0.425 0.541 0.399
Learned XCOMETXL-DA (unified) | 0507 0.390 0.534 0.444 | 0577 0.505 0.627  0.505
Learned XCOMETXL-DA (8bit) 0449 0362 0503 0423 | 0589 0.447 0.613 0.449

Table 3

The Metric columns shows the name of the metric: metrics in bold represent holistic scores, while metrics in regular font
show decomposed scores. The Whole Dataset section denotes results obtained on all segments available in the dataset. The
Mistake-only Dataset section indicates the results obtained onto a subset of the whole dataset comprising only segments
containing at least one mistake. Acc denotes the tie-adjusted Accuracy measure, while Rho stands for the Spearman’s
correlation measure. The strongest statistical correlation for every column is underlined.

annotation framework used for training such metrics and
our custom error taxonomy used for evaluation. Striving
for consistency over error label criteria across training
and evaluation is thus fundamental for fair assessment.

Looking at Whole Dataset, we likewise highlight
that error-span metrics (MetricX and XCOMETXL) are
surpassed by learned metrics that are optimized only for
direct scalar prediction of sentence-level quality, such as
COMET-22-DA, BLEURT and UNITE. As the training
objective of error-span metrics is to regress over error
annotations to estimate penalty weights accordingly,
they may show a proneness for over-correction even in
high-quality segments.

Precision or Recall? In Appendix B, we collect
decomposed subscores for embedding-based metrics:
recall and precision. We notice that recall tends to
correlate more strongly with human judgments than
the holistic score and the precision subscore. This

trend may corroborate the importance of the reference
translation: gauging how much of semantic and syntactic
information contained in the reference transfers to
the candidate may generally serve as a predictor of
legal text quality as conceived of by expert evaluators.
Yet, the negligible edge in the correlation measure is
neither strong nor consistent enough to draw definitive
conclusions. An informed interpretation of the results
would require a qualitative analysis on the amount of
semantic explicitation commonly expressed in the legal
texts of both languages.

Minor varieties remain penalised. Focusing on
the target language, we observe that correlations on the
Mistake-only Dataset are generally higher for Italian than
for German. This result is noteworthy given that German
benefits from a larger pool of training data due to the
fact that it is a more regularly featured language in WMT
shared tasks, which contribute most of metrics training



data. We posit that this discrepancy supports the argu-
ment that generic models tend to embed biases toward
dominant language varieties. In the case of German, it is
likely that the datasets used to train evaluation metrics
predominantly feature standard varieties such as those
used in Germany and at the EU level.

Moreover, we caution against drawing conclusions
based on the Whole Dataset, where Italian-to-German
translations include nearly twice as many full matches
between reference and candidate as the reverse direction.
This makes the datasets not comparable to each other,
inflating metric performance and simplifying evaluation
for German as the target language.

Size matters. When comparing learned metrics of
increasing model size on the Mistake-only Dataset, we
observe a general trend where scaling up benefits evalua-
tion performance. This is evident in the case of COMET-
Kiwi, where the XL variant consistently outperforms
its smaller counterpart, and for reference-based scores
of XCOMETXL-DA-ref, which shows stronger results
compared to COMET-22-DA. A more nuanced picture
emerges with MetricX, where the XL versions outper-
form the Large models only in evaluations into Italian,
suggesting that scaling effects may vary across language
directions, presumably due to the language variety prove-
nance of additional data.

The quantized version of XCOMETXL-DA, though
slightly lowering correlation measures compared to its
full-precision counterpart, still outperforms all other met-
rics, which confirms previous findings that quantization
can be a viable strategy for reducing computational costs.

6. Conclusions

As an indication for future metric development, we con-
clude that reference translations are most crucial for en-
hancing evaluation reliability, while source sentences
may contribute marginally but are not essential. We
advise against embarking on the effort of error-span an-
notation of large corpora with the aim of training new
metrics: it has notable human and resource costs but
results offer no evidence that they determine commensu-
rate metric improvements. Instead, targeted extensions
of the existing MT@BZ dataset may provide more cost-
effective support for evaluation purposes.

Given the underperformance of metrics when evaluat-
ing South Tyrolean German as a target language, future
metric adaptation would likely benefit from applying con-
tinued pre-training to generic encoder models on South
Tyrolean German data. This would provide a more suit-
able backbone for further fine-tuning learned metrics. To
this end, efforts should be made to compile legal text cor-

pora in South Tyrolean German and including relevant
terminology.

Also, we recommend exploring training strategies that
integrate the strengths of embedding-based and learned
metrics, with the goal of developing evaluation systems
that perform robustly across the full quality spectrum of
machine translation output.

From a broader perspective, we suggest that metric
selection in natural language generation tasks should be
guided by a clear definition of the evaluation objective
and the nature of the task. Learned metrics are more
effective when the task involves detecting and weigh-
ing complex linguistic phenomena that may surface in
diverse forms - such as in summarization or question-
answering tasks. In such cases, the fine-tuning and vali-
dation of a custom metric may be a further convenient
step. Conversely, more naive evaluation methods like the
string-based ones are often appropriate when low vari-
ance from a reference is expected, such as in the presence
of named entities. As our findings show, the two met-
ric paradigms can even be complementary: embedding-
and string-based metrics are well-suited for evaluating
accuracy-related aspects, while learned metrics can offer
global insight into the overall fluency of the generated
text and meaning preservation.
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A. Custom error weights

Type of Error Penalty Weight

Accuracy errors

Mistranslation:

Multiword expressions 20
Part of Speech 20
Word Sense Disambiguation 25
Partial 20
Semantically Unrelated 20
Addition 15
Omission 15
Untranslated 20
Mechanical 15
Bilingual terminology 25
Source error 15

Fluency errors

Grammar:
Multiword syntax 15
Word form 15
Word order 15
Extra words 15
Missing words 20
Lexicon:
Lexical choice 15
Non-existing or Foreign Word 20
Orthography:
Spelling 12
Punctuation 12
Capitalization 12
Gender 5
Inconsistency 5
Coherence 5
Multiple fluency errors 10
Other 5

Table 4

The left-hand column lists the error types defined in the custom annotation scheme, while the right-hand column shows the
corresponding penalty weights applied to the segment’s quality score when each error type is present. The SCATE taxonomy
differentiates between fluency and accuracy errors. Some error types are grouped under higher-ranking categories (shown in
underlined font), which serve only as structural labels and do not carry additional penalty weights.



B. Subscores of Embedding-based Metrics

Table 5

Accuracy (Acc) correlation for the decomposed scores of the embedding-based metrics. The name of the model is in bold font,

WHOLE DATASET |

MISTAKE-ONLY DATASET

Model | Im-DE DE-IT | IT-DE DE—IT
bert-base-multilingual 0.781 0.715 0.527 0.549
precision 0.778 0.721 0.517 0.546
recall 0.781 0.699 0.530 0.554
bart-large-mnli 0.780 0.755 0.529 0.530
precision 0.778 0.757 0.521 0.540
recall 0.780 0.738 0.530 0.544
deberta-xlarge-mnli 0.779 0.739 0.526 0.533
precision 0.777 0.741 0.520 0.536
recall 0.782 0.733 0.533 0.539
roberta-large-mnli 0.771 0.760 0.524 0.524
precision 0.766 0.757 0.518 0.534
recall 0.775 0.754 0.526 0.536

while precision and recall decompositions are written in regular font.
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