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Abstract
This paper falls within ongoing research aimed at enhancing the human interpretability of neural language models by
incorporating physiological data. Specifically, we leverage eye-tracking data collected during reading to explore how such
information can guide model behavior. We train a multilingual encoder model to predict eye-tracking features from the
Multilingual Eye-tracking Corpus (MECO) and analyze the resulting shifts in model attention patterns, focusing on how
attention redistributes across linguistically informed categories such as part of speech, word position, word length, and
distance from the syntactic head after fine-tuning. Moreover, we test how this attention shift impacts the representation of the
interested words in the embedding space. The study covers both Italian and English, enabling a cross-linguistic perspective
on attention and representation shifts in multilingual encoders grounded in human reading behavior.
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1. Introduction and Motivation
Neural language models (NLMs) now match or even sur-
pass human benchmarks on many NLP tasks, yet the
logic behind their predictions remains largely hidden be-
hind billions of parameters. To make these systems more
transparent and data-efficient, researchers are increas-
ingly borrowing ideas from cognitive science, grounding
both training and evaluation in how people actually learn
and process language (e.g. [1, 2, 3]). Among the most
informative cognitive signals of human language pro-
cessing is eye-tracking (ET). Decades of psycholinguistic
work show that fixation times, regressions, and skips
mirror both early lexical access and later integrative pro-
cesses underlying text comprehension [4, 5]. Leveraging
these signals has already boosted model accuracy on a
variety of downstream tasks ranging from core linguistic
tasks [6] to more applied tasks like sentiment analysis [7],
language proficiency assessment [8], machine reading
comprehension [9], while also giving us a new lens on
model interpretability. Studies by Sood et al. [10] and
Eberle et al. [11] found that transformer attention does
not always line up with human gaze, whereas Bensemann
et al. [12] and Wang et al. [13] revealed stronger links
in specific layers, hinting at a layered correspondence
between reading behavior and neural representations.
Extending this direction, Dini et al. [14] investigate how
injecting reading-related information into NLMs through
different fine-tuning strategies on ET data affects their
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attention patterns, as well as their performance on down-
stream tasks and representation space. Their findings
show that this intermediate process increases the correla-
tion between model attention and human attention and it
leads to a compression of the embedding space, without
generally degrading performance on downstream tasks.

Building on this foundational framework, this paper
aims to further highlight the effects of incorporating in-
formation about human reading behavior in a NLM
from a linguistically informed perspective. Specifi-
cally, we examine how fine-tuning on eye-tracking sig-
nals leads to shifts in model attention, and how these
shifts affect the structure of word representations. To
explore this, we extract a set of linguistic features, captur-
ing progressively more complex language phenomena,
from the input text and analyze how attention is redis-
tributed across word classes defined by these features. In
parallel, we assess how these attention shifts influence
the embedding space, both at a global level and within the
local representational geometry of specific word classes.

The code for our experiments is publicly available on
GitHub.

2. Related work
Our study intersects two complementary lines of research
within NLMs interpretability. The first investigates ET
data as a diagnostic signal to evaluate the alignment be-
tween model behavior and human cognitive processing,
particularly through the lens of attention mechanisms.
The second focuses on analysing model’s attention mech-
anisms (Section 2.2) and representational space (Section
2.3) in relation to linguistic structure.
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2.1. Eye-tracking and NLMs
In recent years, eye-tracking has emerged as a prominent
physiological signal in NLP research due to its affordabil-
ity and ease of collection compared to methods like fMRI
or MEG. Public resources such as the GECO corpus [15],
the MECO corpus [16], and the WE-RDD dataset [17]
now let researchers probe gaze behaviour at scale across
languages and reading paradigms.

Work with these corpora has split in two directions.
The former injects gaze-derived features, into neural ar-
chitectures, typically lifting accuracy on downstream
tasks. The latter, which motivates our study, treats ET as
a diagnostic for a model’s internal workings.

The first systematic comparison came from Sood et al.
[18], who matched attention maps from CNNs, LSTMs
and Transformers against human fixations. Their find-
ings reveal that while transformers performed the best,
they showed the weakest alignment with gaze. Eberle
et al. [11] confirmed that even after task-specific fine-
tuning, large Transformers stayed distant from human
reading patterns. Conversely, Bensemann et al. [12] re-
ported that raw dwell times correlate strongly with the
earliest BERT layers, a relation that persists as model
size grows. Morger et al. [19] extended the inquiry cross-
lingually and found robust correlations, especially for
monolingual encoders, between human word-importance
rankings and model saliency. Most recently, Wang et al.
[20] showed that deeper layers of NLMs once again echo
fixation metrics, hinting at a layered, non-monotonic link
between model depth and cognitive fidelity.

2.2. Model Attention Dynamics
The role of attention mechanisms in NLMs has been a
subject of extensive research and debate. While atten-
tion weights are often interpreted as providing insight
into model reasoning, a growing body of research has
questioned their reliability as faithful explanations of
model decisions. Some studies suggest that attention
can highlight important input elements, yet others argue
that attention distributions can be manipulated with-
out significantly affecting predictions, casting doubt on
their explanatory power [21, 22]. In response to these
concerns, alternative attribution methods have been pro-
posed—such as attention rollout [23] and gradient-based
techniques [24]—which aim to better capture the path-
ways through which information influences predictions.
As part of this debate, a parallel line of work has ex-
plored whether attention aligns with known linguistic
structures, such as syntactic dependencies or PoS cate-
gories, offering a complementary perspective on its in-
terpretability. The foundational study by Clark et al. [25]
showed that certain attention heads in BERT consistently
focus on syntactic phenomena, such as attending to an

entity’s determiners or subjects attending to their verbs.
However, fine-tuning on syntactic or semantic tasks had
minimal effect on altering self-attention patterns. Vig
and Belinkov [26] conducted a comprehensive analysis
of attention head interpretability in GPT-2 using both
visualization and quantitative measures. Their results in-
dicate a layer-specific linguistic sensitivity, with different
types of linguistic information—such as PoS and syntac-
tic dependencies—being more salient in particular layers.
They also found stronger alignment with syntactic de-
pendencies in the model’s middle layers. Htut et al. [27]
directly evaluated the extent to which attention aligns
with gold-standard dependency parses. By computing
the correspondence between attention distributions and
syntactic head-dependent pairs, they showed that BERT’s
attention does not systematically reflect syntactic depen-
dency structures, particularly in deeper layers.
Taken together, these studies suggest that while atten-
tion mechanisms can exhibit linguistically meaningful
behavior in isolated cases—especially in specific layers or
individual heads—they do not consistently encode syn-
tactic or morpho-syntactic structure.

2.3. Geometry of the embedding space
Transformer models learn a high-dimensional embedding
space in which every token is represented by a dense vec-
tor that encodes both meaning and syntax. A consistent
finding is that these vectors occupy only a narrow cone
of the space, an anisotropic layout sometimes called the
representation degradation effect [28, 29, 30]. In NLP,
such behaviour is often viewed as harmful because it
can hide fine-grained linguistic cues [31, 32, 33]. Yet the-
ory and broader machine-learning evidence show that
anisotropy can arise naturally under stochastic gradi-
ent descent and may even aid generalization, especially
when models project data onto low-dimensional mani-
folds [34, 35, 36, 37]. In this respect, studying the impact
of various fine-tuning objectives and downstream tasks
provides important insights into how they shape the ge-
ometry of the embedding space [34, 35, 36]. While still
relatively limited, a growing body of work has begun
to examine the relationship between embedding space
properties and linguistic phenomena. For example, Her-
nandez and Andreas [38] show that linguistic features
tend to be encoded in lower-dimensional subspaces in
the early layers of both ELMo and BERT and that rela-
tional features (like dependency relations between pairs
of words) are encoded less compactly than categorical
features like part of speech. More recently, Cheng et al.
[39] analyzed representation compression in pre-trained
language models from both geometric and information-
theoretic perspectives. Their findings reveal a strong
correlation between these two views and show that the
intrinsic geometric dimension of linguistic data is predic-



tive of its coding length under the language model.
To the best of our knowledge, no systematic study has

examined how eye-tracking fine-tuning affects attention
patterns and the resulting embedding representations
across different linguistic phenomena. Moreover, cross-
linguistic analyses of these changes following cognitively
motivated fine-tuning remain scarce.

3. Dataset
For our analysis, we leverage two distinct datasets: the
Multilingual Eye-tracking Corpus (MECO) to finetune
the model on human gaze modeling and treebanks from
the Universal Dependencies (UD) project to extract lin-
guistically motivated features and compute model at-
tention shifts and representation structure induced by
fine-tuning on ET data.

3.1. Eye-tracking data: The MECO Corpus
MECO [16] is a multilingual collection featuring read-
ing behavior from both native (L1) and second-language
speakers across 13 languages. We focus on the L1 subsets
for English and Italian, chosen for their typological di-
versity and data completeness, allowing for a controlled
yet cross-linguistic perspective on gaze modeling.

Each participant in MECO read 12 encyclopedic-style
texts, covering general knowledge topics. To ensure con-
sistency and limit computational costs, we selected the
largest subsets of users who had read the majority of sen-
tences. For Italian, we included 9 participants who read
all sentences. For English, since no participant completed
the full set, we selected 25 participants who all read the
same set of sentences, missing only two in common.

We used five ET features intended to represent early,
late and contextual signals of human reading processes:
First Fixation Duration: the duration of the first fixa-
tion landing on the word; Gaze Duration: the summed
duration of fixations on the word in the first pass, i.e.,
before the gaze leaves it for the first time; Total Reading
Time: the cumulative amount of time spent reading a
word, capturing both fixations and potential interrup-
tions (e.g., regressions or pauses); First-run Number of
Fixations: the number of fixations on a word during the
first pass; Total Number of Fixations: the number of
discrete fixations on areas of interest overall.

3.2. Universal Dependencies Treebanks
To analyze how model attention weights and embedding
space shift following fine-tuning on eye-tracking data,
we relied on linguistically annotated corpora from UD
treebanks [40]. Specifically, for Italian, we employed
the subsection corresponding to the training set of the

Italian Stanford Dependency Treebank (ISDT), which
contains ≈ 13, 000 sentences drawn from a variety of
textual genres. For English, we used the training set of the
English Web Treebank (EWT) [41], including ≈ 12, 000
sentences , also multi-genre. UD corpora were chosen
due to their gold-standard syntactic and part-of-speech
annotations, which provide a reliable foundation for our
fine-grained linguistic analyses. Additionally, the cross-
linguistically consistent annotation schema offered by
UD enables meaningful comparisons across typologically
distinct languages.

4. Our Approach
We propose a linguistically informed framework to
investigate the impact of injecting human reading be-
haviour into a pre-trained NLM, focusing on its effects
on attention and word representations. The approach
consists of two main stages: first, we fine-tune the model
on predicting several ET features; then, we compare the
pre-trained and fine-tuned models along three axes: i)
Correlation between model attention and human atten-
tion; ii) Attention distribution over input tokens; iii) Sen-
tence representations in the embedding space.

To enable a more fine-grained analysis of how ET fine-
tuning affects word representations, we condition our
evaluations on the following linguistic features extracted
from the UD treebanks: word length in characters, part
of speech category, position in the sentence, and dis-
tance from the syntactic head.

For our experiments we used XLM-RoBERTa-base, a 12
layer multilingual encoder-based model. In what follows,
we outline the methodological choices and implementa-
tion details of our experimental setting.

4.1. ET injection into the Model
To inject reading-related information into the model, we
leverage the set of eye-tracking features from MECO de-
scribed in Section 3.1. Unlike most prior work—which
typically aggregates eye-tracking data across participants,
with few exceptions [42]—we treat each reader individu-
ally, conducting experiments separately for each subject.
This design choice is motivated by the intrinsic variability
observed in reading behavior, even among skilled read-
ers [43, 44, 45], and enables a more accurate modeling of
reader-specific dynamics.

After a hyperparameter tuning phase using 5-fold
cross-validation, we fine-tune the model to predict
five word-level eye-tracking features, training a sep-
arate model for each individual reader.

Since the MECO dataset provides annotations at the
word level, while the model’s tokenizer splits some words
into subword units, we follow standard practice [46] and



assign eye-tracking features only to the first sub-token
of each word, ignoring the rest during training1.

To examine whether the fine-tuned model develops
a more human-like attention pattern, we compute the
correlation between model attention and human
attention before and after fine-tuning. For model at-
tention, we consider the attention weights received by
each word when computing the representation of the
beginning-of-sentence token (<s>), which is the only to-
ken used during the eye-tracking prediction phase and
serves as a global summary of the sentence. To account
for subword tokenization, we follow the same approach
used during fine-tuning and associate attention scores to
the first sub-token of each word. As a proxy for human
attention, we choose the Total Reading Time feature (see
Section 3.1). For each reader, we thus compute the corre-
lation between their eye-tracking data and the attention
patterns of both the pre-trained and the fine-tuned model
across all layers, allowing us to assess whether the latter
aligns more closely with human reading behavior.

4.2. Assessing the Role of ET fine-tuning
on Word Representations

To assess how fine-tuning on ET affects the model’s in-
ternal dynamics for attention and embedding space, we
leverage the linguistic features from the treebanks de-
scribed in Section 4.

Specifically, to compute the attention shifts, for each
value of these features, we analyse the amount of atten-
tion the corresponding words receive before and after
fine-tuning. This allows us to characterize shifts in atten-
tion distribution across different linguistic phenomena
and across all layers of the models. Firstly, we normalize
the attention scores for each sentence (excluding BOS
and EOS tokens) so that their sum is 1. Attention shifts
are quantified as the percentage change in the average
attention received by tokens with a given feature value,
before fine-tuning. A positive shift indicates increased
attention to these tokens after fine-tuning, while a neg-
ative shift reflects a decrease. This allows us to identify
which linguistic categories gain or lose prominence after
incorporating eye-tracking supervision.

To analyze the shifts in the embedding space, we
rely on two complementary metrics. (i) IsoScore [47] of-
fers a scale-invariant measure of isotropy: lower scores
indicate that the embedding variance is concentrated
along fewer directions, pointing to a more anisotropic
space. (ii) Linear Intrinsic Dimensionality (Linear-ID) [48]
estimates the dimensionality of the smallest linear sub-
space that captures the embeddings, providing a proxy
for their geometric complexity.

1The fine-tuning is run for 50 epochs, using a learning rate of 5𝑒−05,
a weight decay of 0.01, and a warm-up ratio of 0.05.

The two metrics were computed on the first sub-token
of each word in the UD treebanks. In line with the other
analyses, we compare the embedding spaces of the pre-
trained and fine-tuned models to assess whether ET fine-
tuning leads to more compact or more isotropic repre-
sentations, as reflected by changes in these metrics.

All reported scores are first computed for each user
individually and then averaged across all users.

5. Results

5.1. Correlation between model and
human attention

Figure 1: Correlation between model attention and human
attention (p-value < 0.05).

As a first evaluation step, we computed the correlation
between human attention and model attention, both be-
fore and after fine-tuning on eye-tracking data. As we
are interested in the strength rather than the direction
of the association, we considered the absolute values of
the correlation coefficients. For the fine-tuned models,
we computed the correlation between the model’s atten-
tion weights and the Total Reading Time of the specific
user on which each model was fine-tuned. For the pre-
trained model, which is not finetuned to any individual
reader, we calculated the correlation between its atten-
tion weights and the Total Reading Time of each user
independently, and subsequently averaged the resulting
coefficients. Figure 1 reports the comparison of Spearman
correlation coefficients, averaged across all users.



In line with results reported in [14, 49], fine-tuning
on ET data consistently leads to stronger correlation
coefficients between model and human attention,
particularly in the deeper layers of the model. This
effect is evident in both Italian and English. The overall
patterns are remarkably similar across the two languages,
although the correlation scores for Italian are slightly
higher on average.

5.2. Analysis of the Attention Shifts
This section reports the analysis of the attention shifts in-
duced by fine-tuning on ET data. We grouped tokens into
classes for the values of the linguistic features detailed in
Section 4. To enhance readability and interpretability, for
each linguistic feature we visualised only the most repre-
sentative values. Rather than applying a strict frequency
threshold, we heuristically excluded rare or degenerate
cases (e.g., for token length, extremely long tokens such
as URLs), retaining typical and frequent values that bet-
ter reflect standard linguistic patterns. Each figure also
includes an “AVG” column summarizing the average shift
across all layers, offering a high-level view of the atten-
tion reallocation patterns.

Figure 2: Attention shift for word length.

Figure 2 reports the results of the attention shift anal-

Figure 3: Attention shift for UD Parts of Speech.

ysis for word length, showing three distinct patterns.
First, single-character words consistently lose atten-
tion after fine-tuning, with particularly sharp drops ob-
served in layers 5, 7, and 10. An exception appears in Ital-
ian, where these short words receive a notable increase in
attention in layer 9. Second, short words (2-3 characters)
exhibit a general increase in attention across most lay-
ers, especially pronounced in layer 9 and 11, suggesting
that the fine-tuned model places greater importance on
these short words. Finally, longer words (4+ characters)
show a more complex pattern, with attention picks
and decreases alternating across layers. Interestingly,
layers 5 and 10 display a gradual increase in attention
starting from 6-tokens long, suggesting that it may en-
code length-sensitive distinctions post-fine-tuning.

Figure 3 shows the attention shift analysis across Parts
of Speech. Overall, we observe a reduction in attention
to punctuation marks (PUNCT) across layers, reinforcing
the word length analysis and suggesting that the model
learns to down-weight non-lexical tokens after fine-
tuning on eye-tracking data. In contrast—and some-
what unexpectedly, given existing psycholinguistic evi-
dence on human reading behavior—, functional words
like adpositions (ADP), determiners (DET), and auxiliary
verbs (AUX) receive increased attention, likely reflect-
ing their importance in building the syntactic structure



Figure 4: Attention shift for word position in sentence.

and sentence interpretation. Additionally, a language-
specific effect is visible in Italian, where coordinating
conjunctions (CCONJ) gain notable attention across sev-
eral layers. While similar shifts occur sporadically in the
English model, they are less consistent and often offset
by decreases in other layers.

As regards the attention shifts based on the word’s
position within the sentence (Figure 4), we noted that
for both languages tokens appearing earlier in the
sentence generally receive slightly more attention
after fine-tuning, whereas those occurring later receive
less. An exception is observed for the first two tokens,
which deviate from this trend. Layer-specific behaviors
also emerge: for instance, layers 2 and 9 tend to increase
attention toward later tokens, while most other layers
show the opposite effect, emphasizing earlier positions.
Notably, layer 2 and layer 11 both show sharp increases
in attention to the first token, suggesting a potential
reweighting of sentence-initial information after expo-
sure to human reading patterns. Interestingly, quantita-

Figure 5: Attention shifts for distance from syntactic head.

tive data from the used UD treebanks show that early
sentence positions largely correspond to syntactically
central elements—particularly the root, which anchors
the clause and governs the structure of major comple-
ments. The observed shift in attention may therefore
reflect the model’s increased sensitivity to syntactic or-
ganization cues at sentence onset, especially in specific
layers. This behavior is also well-documented in psy-
cholinguistic studies and indicative of incremental pars-
ing, where early elements guide syntactic and semantic
expectations during sentence comprehension.

Figure 5 shows the attention shifts for the head-
dependent distance parameter. A positive value indicates
that the head follows the dependent, while a negative one
that the head precedes it. The special value 0 is assigned
to the root of the sentence. On average, it emerged that
tokens that are syntactically closer to their head
tend to receive more attention after fine-tuning,
particularly when the head follows the dependent.
This suggests that fine-tuning on ET data encourages



the model to prioritize syntactic dependencies that
align with typical reading dynamics, where upcom-
ing heads may draw anticipatory processing effort.

5.3. Shifts in the Embedding Space

Figure 6: IsoScore (Top) and Linear Intrinsic Dimensionality
(Bottom) of word embeddings from all model layers, before
and after fine-tuning, averaged across users.

For space reasons, this section is limited to results for
Italian; results for English show comparable trends and
are provided in Appendix B. In the pre-trained model,
IsoScore stays flat at ≈ 0.10 through layer 6 and drops
only in the final layers. After ET fine-tuning, the decline
starts at layer 4, leaving layers 1–3 unchanged but render-
ing the upper layers markedly more anisotropic (Fig. 6,
top). Linear-ID mirrors this pattern: the pre-trained
model sustains ≈ 650 effective dimensions across all
layers, whereas the fine-tuned one contracts from layer 4
onward and collapses to <100 dimensions by layer 12
(Fig. 6, bottom). For these phenomena, as well as the ones
to follow, the reduction of IsoScore and Linear-ID after
fine-tuning is statistically significant (p<0.05 based on
the Wilcoxon signed-rank test).

These results align with findings reported in [14] on
how ET fine-tuning influences the embedding space
shift. The linguistically informed analysis provides ad-
ditional insights. Considering words grouped by part
of speech and head-dependent distance (analyses for the
remaining features are given in Appendix B), some main
trends emerge. For POS (Figures 7 and 8), the pre-
trained model assigns content words (NOUN, VERB,
PROPN) the highest-dimensional, most isotropic

subspaces, with functional words and punctuation
confined to lower dimensions. Since content words
exhibit high semantic diversity, the model tends to dis-
tribute their embeddings across many nearly orthogo-
nal directions, resulting in broader and more isotropic
subspaces. Function words, being few but very fre-
quent and semantically uniform, collapse into a tight,
anisotropic region, yielding lower IsoScore and Linear-
ID. Fine-tuning compresses all POS categories in
the upper stack, erasing the hierarchy above layer ∼
6 while retaining it below; content words still display
slightly greater variability. The observed contraction of
the embedding space and loss of isotropy mirror the new
optimization objective imposed during fine-tuning: to
solve the ET task, the model no longer requires highly
granular lexical representations, even for content words,
so the latent geometry collapses accordingly. Turning
to syntactic structure as captured by dependency dis-
tance (Figures 9 and 10), we observe a notable asym-
metry already in the pre-trained model based on
the position of the dependent: right dependents (and
specifically within 𝑑 ∈ [−3,−1] of the head) display
higher Linear-ID and isotropy, while left ones are con-
fined to lower-dimensional and less uniform subspaces.
This phenomenon appears highly interesting and, to the
best of our knowledge, has not been previously reported,
warranting a more in-depth investigation. After fine-
tuning, the model applies a uniform compression
across all distance bins in the upper layers (from
layer 8 onward), while preserving the strong distinction
between left and right dependents in earlier layers.

6. Conclusion
In this paper, we proposed a linguistically informed ap-
proach to study the impact of incorporating human read-
ing behavior into a NLM. Our main findings reveal sys-
tematic and interpretable changes across both attention
patterns and the representation space. Fine-tuning on
eye-tracking shifts attention toward syntactic cues and
sentence-initial elements, while reducing focus on non-
informative tokens like punctuation, especially in middle
and upper layers. Some of these trends partially mirror
human reading dynamics and warrant further investi-
gation. At the representational level, we observe sub-
stantial compression and increased anisotropy, especially
for functional words and tokens close to their syntactic
heads. We believe these preliminary findings confirm the
value of analyzing attention and representation spaces
through a linguistic lens, and open several avenues for
future research, including how compression effects and
cognitively grounded attention patterns may support the
development of smaller, more efficient models through
human-inspired inductive biases.



Figure 7: Isotropy before (top) and after (bottom) fine-tuning,
shown for the 13 most frequent POSs

Figure 8: Linear-ID before (top) and after (bottom) fine-
tuning, shown for the 13 most frequent POS classes.

Figure 9: Isotropy before (top) and after (bottom) fine-tuning,
shown for syntax head distance (up to 7 tokens distance).

Figure 10: Linear-ID before (top) and after (bottom) fine-
tuning, shown for syntax head distance (up to 7 tokens dis-
tance).
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A. Shift in the embeddings space -
Extra features

This Appendix section contains the analysis of Section
5.3 conducted on the remaining linguistic features: word
length, Figures A.1 and A.2, and word index in sentence,
Features A.3 and A.4. As in Section 5.3, a clear hierarchy
emerges among the new feature classes. For word length,
tokens 6–10 characters long retain the highest IsoScore
and Linear-ID before collapsing, like all other bins, under
fine-tuning.

Figure A.1: Isotropy before (left) and after (right) fine-tuning,
shown for word length (up to 15 tokens).

Figure A.2: Linear-ID before (left) and after (right) fine-
tuning, shown for word length (up to 15 tokens).

Figure A.3: Isotropy before (left) and after (right) fine-tuning,
shown for word index (up to index 18).

Figure A.4: Linear-ID before (left) and after (right) fine-
tuning, shown for word index (up to index 18).

For the word-index feature, position 1 is the most dis-
tinctive. Lexical composition of these classes will be
addressed in future work.

B. Shift in the embedding space -
English dataset

We report the scores on the English word embeddings.
The results are comparable to those on the italian dataset.
Further exploration of parallels and differences will be
the focus of future work.



Figure B.1: Isotropy before (top) and after (bottom) fine-
tuning, shown for the 13 most frequent POS classes.

Figure B.2: Linear-ID before (top) and after (bottom) fine-
tuning, shown for the 13 most frequent POS classes.

Figure B.3: Isotropy before (top) and after (bottom) fine-
tuning, grouped by syntactic head distance (up to 7 words of
distance).

Figure B.4: Linear-ID before (top) and after (bottom) fine-
tuning, grouped by syntactic head distance (up to 7 words of
distance).



Figure B.5: Isotropy before (top) and after (bottom) fine-
tuning, shown for word length (up to 15 tokens).

Figure B.6: Linear-ID before (top) and after (bottom) fine-
tuning, shown for word length (up to 15 tokens).

Figure B.7: Isotropy before (top) and after (bottom) fine-
tuning, shown for word index (up to index 18).

Figure B.8: Linear-ID before (top) and after (bottom) fine-
tuning, shown for word index (up to index 18).
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