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Abstract
Reasoning about causal and temporal relationships is fundamental to human intelligence but poses a persistent challenge for
AI. Vision-Language Models (VLMs) offer a promising path towards more robust conceptual understanding by grounding
language in perception. However, it is unclear if this grounding enables genuine, human-like reasoning. We investigate this
question by focusing on the causal and temporal abilities of two leading VLMs using a novel multimodal dataset derived from
the ExpliCa dataset. Through a series of carefully designed tasks, we isolate their performance on visual-only input versus
combined visual-textual inputs. Our results show that while models exhibit some reasoning capability, they are hindered by a
marked “iconicity bias”: their performance degrades on relations where the perceptual sequence of images mismatches the
logical event order (i.e., anti-iconic). This reliance on simple visual heuristics suggests that their high-level reasoning failures
may be symptomatic of a more fundamental, fragile visual understanding.
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1. Introduction
The ability to comprehend and reason about causal and
temporal relationships is a cornerstone of human cogni-
tion, underpinning our capacity to understand narratives,
predict outcomes and navigate the complexities of the
world. We effortlessly discern why an event occurred and
the sequence in which events unfolded, integrating infor-
mation from various modalities. While Large Language
Models (LLMs) have demonstrated remarkable fluency in
generating text that describes such relationships, a criti-
cal question remains: do they possess a genuine, human-
like understanding of these fundamental concepts or do
they primarily rely on sophisticated pattern matching
learned from vast textual corpora [1, 2]? This distinction
is crucial, as linguistic proficiency can sometimes obscure
deeper cognitive limitations, a phenomenon known as
the “fallacy of language as thought” [3].

Recent advancements have led to the development
of Vision Language Models (VLMs), which are trained
on both textual and visual data [4, 5]. This multimodal
grounding offers a potential pathway to richer, more
robust representations of concepts, potentially bridging
the gap between linguistic competence and conceptual
understanding, as human meaning representation itself
relies on multiple modalities [6, 7]. However, the extent
to which this enriched inputs translate to superior causal
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and temporal reasoning capabilities remains an area in
need of investigation.

This paper contributes to this line of inquiry by
conducting a focused analysis of the causal and tem-
poral reasoning abilities of two distinct, current gen-
eration multimodal models: Llama-11b-vision and
Gemini-flash-2.0. We explore their performances
with a series of carefully designed tasks on a multimodal
version of the ExpliCa dataset, which explicitly com-
bines causal and temporal relations [8]. Our objective is
twofold: first, we aim to assess the models’ capacity to
infer these relations from visual input alone; second, we
want to address how their performances change when
the visual stimuli accompany the textual captions. We
do so by comparing models with differing architectures
and parameter counts and varying the input modalities.

Our experimental methodology involves i) construct-
ing a novel image dataset, that we name Visual-ExpliCa,
aligned with the ExpliCa dataset,1 and ii) evaluating the
models on five distinct tasks of increasing difficulty. The
tasks range from directly identifying the type of relation-
ship (causal vs. temporal) and specifying the antecedent
and consequent from image-only input, to selecting the
correct linguistic connective and judging the overall ac-
ceptability of an event when both images and textual
descriptions are provided. Through this graduated ap-
proach, we seek to disentangle the models’ visual infer-
encing capabilities from their ability to integrate multi-
modal information.

Our findings reveal that while both models demon-
strate capabilities beyond chance in interpreting visual

1https://github.com/Unipisa/explica
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sequences, they exhibit distinct strengths, weaknesses
and biases, particularly struggling with anti-iconic rela-
tions (i.e., when the sequence of events is inverted com-
pared to their chronological and/or logical-causal order)
when relying solely on visual input. This suggests that
current VLMs, despite their multimodal training, may
still heavily favour direct, sequential interpretations of
visual information for complex reasoning tasks.

2. Related works
A growing body of work focuses on assessing the rea-
soning abilities of pre-trained models, particularly in the
domain of causality. LLMs have been evaluated on vari-
ous causal tasks which reveals that their grasp of formal
causality is often superficial and prone to heuristic-based
errors. A key development in rigorously probing these
limits is the CLADDER dataset [9], which moves beyond
commonsense questions by grounding them in symbolic
queries derived from an oracle causal inference engine.
By evaluating models against the formal rungs of Pearl’s
Ladder of Causation [10], the authors found that even
with bespoke prompting strategies like CAUSALCOT,
LLMs struggle significantly with formal, rule-based in-
ference. This concern over the fallibility of LLMs causal
understanding is echoed by other research, which shows
models are susceptible to inferring causality from simple
positional cues or temporal precedence (post hoc fallacy)
and struggle to infer causal links from counterfactual
evidence, suggesting a reliance on memorized heuristics
rather than deep reasoning [11]. In another work was
proposed a novel architecture (CARE-CA) [12] that in-
tegrates explicit causal knowledge from resources like
ConceptNet with implicit reasoning patterns from LLMs,
enhanced by counterfactual analysis.

This susceptibility to temporal fallacies underscores
a critical prerequisite for robust causal reasoning: a co-
herent understanding of time itself. However, research
demonstrates that LLMs’ internal model of time is fragile.
Authors in [13] identify several key failure modes, includ-
ing temporal shifts, invariance and inertia, where models
either disregard the specific time in a query or fail to up-
date long-held facts. Recognizing that direct reasoning
over unstructured text may be the source of this fragility,
some approaches focus on actively mitigating these flaws.
The TG-LLM framework, for instance, proposes a two-
step process: first translating unstructured text into a
formal temporal graph and then fine-tuning the LLM to
perform Chain-of-Thought reasoning over this explicit
structure [14]. This methodological shift from implicit
to explicit representation significantly improves perfor-
mance, highlighting that the reasoning deficit may lie
more in parsing complexity than in logical inability.

The challenge of causal reasoning becomes even more

pronounced when extending from the linguistic to the
multimodal domain, where models must integrate visual
evidence with abstract knowledge. Recent benchmarks
reveal that the performance of state-of-the-art VLMs is of-
ten no better than random chance. The MuCR benchmark
[15], designed to test the inference of cause-and-effect
from visual cues alone, found that models either suffer
from inadequate visual perception or are biased by their
language priors to the point of ignoring contradictory
visual evidence. This deficiency is not merely about iden-
tifying simple causal chains. The NL-EYE benchmark,
which frames abductive reasoning as a visual entailment
task, found that VLMs perform at or below random base-
lines on a task humans find trivial [16]. Crucially, the
failure was not one of logic—when given textual descrip-
tions of the scenes, the models succeeded. The break-
down occurs in visual interpretation, where models are
distracted by superficial cues and fail to grasp the un-
derlying commonsense relationships. This points to a
fundamental gap between a model’s linguistic reason-
ing capabilities and its ability to ground that reasoning
in the perceptual world. Similarly, the TemporalVQA
benchmark tests models on temporal order understand-
ing and time-lapse estimation between images [17]. Their
conclusions reveal that even top-tier models perform at
or below random chance, are highly sensitive to image
layout and rely on superficial spatial cues rather than
genuine temporal comprehension.

3. The Visual-ExpliCa Dataset
The empirical investigation presented in this paper relies
on a carefully constructed dataset, specifically created to
align visual stimuli with textual ones from the ExpliCa
dataset [8]. ExpliCa features 600 unique events, each
represented by a pair of sentences. These pairs are linked
by an explicit connective that establishes one of three
relationship types: causal (so, because), temporal (then,
after) or unrelated. The connectives define the nature
and directionality of the relationship between the two
sentences. Specifically, this directionality distinguishes
between iconic relations, where the order of sentences
reflects the chronological or causal sequence of events
(i.e., with connectives so and then), and anti-iconic rela-
tions, where the presentation order is inverted relative to
the logical flow (i.e., with connectives because and after).
Explicit connectives for sentence pairs where selected via
crowdsourcing experiments [8]. Additionally, ExpliCa is
controlled for potential confounding biases, such as Lexi-
cal Association Bias (ensuring that word co-occurrences
within sentence pairs do not disproportionately favor
certain relationship types) and Frequency Bias (ensur-
ing that the linguistic structures representing different
relations are comparably frequent in natural language).



This makes it a robust resource for evaluating genuine
reasoning rather than statistical shortcuts.

In building Visual-ExpliCa, we focused exclusively on
the causal and temporal relations, excluding the unrelated
category of the original dataset. In order to collect visu-
als matching sentences in the dataset, we first conducted
some pre-processing steps. These involved i) lemmati-
sation, to mitigate data sparsity issues and to alleviate
issues with VLMs struggling with temporal dimensions
encoded in verb conjugations [18], and ii) NER, specif-
ically to replace people NEs with generic placeholders
(e.g., "Matteo" is replaced by "[PERSON]"), and prevent
image retrieval to focus on specific individuals rather
than the core actions and concepts of the sentence. For
pre-processing, we used SpaCy.2

3.1. Images Collection
Images to match sentences of ExpliCa were mostly col-
lected from the Fondant-CC-25M dataset. 3 It is a large-
scale image corpus derived from CommonCrawl, com-
posed exclusively of images with Creative Commons li-
censes. This choice ensures ethical usage and avoids copy-
right issues prevalent in many traditional image datasets.
To retrieve images, we used the clip-retrieval library.4
This tool leverages CLIP (Contrastive Language-Image
Pre-Training) [19] to find images whose embeddings are
semantically closest to the text query’s embedding. For
each sentence, we selected the 10 images with the high-
est CLIP score. Then, to ensure a reasonable degree of
semantic alignment between the visual and textual com-
ponents, we conducted a further manual review to select
the final image for each single sentence.

For a small number of sequences we were not able to
retrieve high-quality descriptions. To address these cases,
we resorted to text-to-image generation. Specifically, we
used the Segmind Stable Diffusion model5 to create visual
representations for captions that were too abstract or spe-
cific for the retrieval process. The generative approach
was required for 39 individual captions (out of the 778
total captions in the final dataset).

Nevertheless, a smaller subset of captions proved in-
tractable. Specifically, for 12 sentence-pairs of the origi-
nal dataset, it was not possible to obtain a suitable image
for at least one of the two descriptions, either through
retrieval or generation. We chose to exclude the entire
sentence-pair from the final analysis to ensure the qual-
ity and coherence of the dataset. Consequently, the final
curated multimodal dataset used for our experiments con-
sists of 388 event pairs. Table 1 shows the distribution of
categories in the dataset.

2spacy.io
3https://huggingface.co/datasets/fondant-ai/fondant-cc-25m
4https://github.com/rom1504/clip-retrieval
5https://huggingface.co/segmind/SSD-1B

Connective Relation, Direction Count

so Caus., Ic. 106
then Temp., Ic. 105
because Caus., A-Ic. 99
after Temp., A-Ic. 78

Total 388

Table 1
Distribution of event pairs in the final curated dataset, catego-
rized by connective type. Causal and Temporal are abbreviated
with Caus. and Temp. respectively. Iconic and Anti-Iconic are
abbreviated with Ic. and A-Ic. respectively.

Figure 1 shows an example of a sentence-pair for a
Causal, Iconic (Caus., Ic.) including visuals from the final
dataset.

Figure 1: An example of a sentence pair with images; the
relation in this case is Causal, Iconic.

4. Experimental Setup

4.1. Models
To evaluate the capabilities of current VLMs in causal and
temporal reasoning, we selected two prominent models
representing distinct architectural families and develop-
ment origins: Llama-11b-vision from Meta AI [20]
and Gemini 2.0 Flash from Google DeepMind [21].
Llama-11b-vision is part of the Llama 3.2-Vision

family of models. It was released by Meta in September
2024. These models are designed to be natively multi-
modal, capable of processing paired image and text inputs
to generate textual outputs. Its architecture builds upon
the Llama 3.1 LLM family. The instruction-tuned versions
of Llama-3.2-Vision, including the variant used here, are
optimized through a combination of Supervised Fine-
Tuning (SFT) and Reinforcement Learning from Human
Feedback (RLHF) [20]. Authors argue that this alignment
process aims to enhance the model’s utility, safety and
ability to follow instructions. The vision component was
pre-trained on a dataset of 6 billion image-text pairs.
Gemini 2.0 Flash is a multimodal large language

model (text, image, audio, video) with a 1M-token context

spacy.io
https://github.com/rom1504/clip-retrieval


window, positioned as an upgrade over Gemini 1.5 Flash.
It is reported to achieve improved efficiency and bench-
mark performance through a refined Mixture-of-Experts
Transformer architecture and supports real-time multi-
modal interactions [22]. It inherits the general Gemini
philosophy of deep interweaving of modalities.

We chose these models to reflect two contrasting
trends in multimodal AI: Llama, an open-source and
relatively small model accessible for research at mod-
est computational cost, and Gemini Flash, a closed but
comparatively compact commercial system optimized
for efficiency and lower inference costs. This contrast
highlights differences in openness, scale, and resource
demands, providing a balanced testbed for evaluating
causal and temporal reasoning.

4.2. Tasks design
To systematically probe the models’ reasoning capa-
bilities, we designed five distinct experimental tasks
grounded in the Visual-ExpliCa dataset. These tasks are
structured to progressively increase in complexity and
are organized into two primary conditions that directly
address our research objectives: assessing reasoning from
visual-only input (Tasks 1 to 3) and evaluating multi-
modal integration (Tasks 4 and 5).

We employ a Multimodal-Chain-of-Thought
(Multimodal-CoT) strategy for prompting in visual-
only tasks. This strategy is inspired by [23], and is
aimed at addressing one of the most critical failure
modes in prompting VLMs, i.e. their tendency to rely
on superficial visual processing and get distracted by
irrelevant cues. In contrast, using Multimodal-CoT
we structure the prompt to first elicit a description
and interpretation of the visual information before
attempting further reasoning, to establish a grounded
rationale. This visual analysis then serves as the
foundation for the reasoning steps needed to derive the
final conclusion, effectively creating a reasoning chain
[24].6

The first three tasks are designed to isolate the mod-
els’ ability to infer causal and temporal relations relying
solely on visual evidence. The model is first prompted
to describe the visual content of the two images before
being asked to perform the specific reasoning step. The
final two tasks assess how performance vary given the
support of textual data, thus evaluating the models’ ca-
pacity to integrate information from both modalities. In
the following, we detail each task.

6We report examples of prompts in the Appendix.

Task 1. Relation identification In the first task, the
model’s goal is to classify the fundamental re-
lationship between the two visual depictions of
events as either causal or temporal, regardless of
the order they are presented in.

Task 2. Directionality Specification In the second
task, the model’s goal is to determine the logical
order of the event, identifying which image rep-
resent the antecedent and which the consequent,
regardless of their causal or temporal relation.

Task 3. Connective Selection In the third task, the
model’s goal is to provide the most appropriate
linguistic connective (among so, because, then,
and after) given the pair of images representing
the events, in a specific order. Recall that each
connective is directly associated with a Relation
(causal or temporal) and a Direction of such rela-
tion (iconic or anti-iconic).

Task 4. Connective Selection With Captions The
fourth task is analogous to the third task.
However, in this case the model is provided with
both the images and their corresponding textual
description of the events from ExpliCa. This
allows for a direct comparison of performance
with and without linguistic context.

Task 5. Acceptability rating In the fifth and final task,
we replicate one of the experiments conducted
on ExpliCa in [8]. Here, the model must perform
a holistic evaluation of a complete multimodal
input (two images, two captions and a human-
provided connective). It is tasked with providing
a numerical plausibility rating from 1 to 10, sim-
ulating a human-like judgment of coherence. We
chose to exclude Llama-11b-vision from this
specific task, as preliminary tests revealed it was
unreliable in consistently generating ratings in
the required numerical format. This is a known
issue also reported in [8]. We can speculate that
it is probably due to the limited model size. Con-
versely, to robustly assess Gemini-2.0-Flash
and account for output variability, we prompted
it to generate five distinct ratings for each event.
This was achieved by querying the model five
times, each with a different temperature setting
to modulate the randomness of the output. We
used the average of these ratings as the final score.

4.3. Evaluation
Our evaluation strategy was designed to measure the
multifaceted nature of the models’ causal and temporal
reasoning across the five experimental tasks. The metrics



Model Overall Acc. Caus. Acc. Temp. Acc.
Gemini 0.72 0.58 0.87
LLaMA 0.63 0.86 0.40

Table 2
Results for Task 1.

were chosen to reflect the nature of each task, ranging
from categorical decisions to graded plausibility judg-
ments.

For tasks requiring a categorical decision (Tasks 1-4),
we employed a “cloze test” paradigm, mirroring the eval-
uation approach often used for the ExpliCa dataset [8]. In
this setup, the models were presented with the input (ei-
ther images-only, or images and partly-hidden captions)
and asked to “fill in the blank” by choosing the most
suitable option from a predefined list of candidates. A re-
sponse was considered correct only if it exactly matched
the designated ground truth; both incorrect choices and
responses that did not conform to one of the choices were
marked as an error. The primary evaluation metric for
these tasks was Accuracy. However, for Tasks 3 (Con-
nective Selection) and 4 (Connective Selection with Cap-
tions), which involve a multi-class classification among
four connectives, we also computed the F1-score. This
metric provides a more balanced assessment than accu-
racy alone, as it considers both precision and recall for
each connective class. This is particularly useful for iden-
tifying whether a model’s performance is uniform across
the different logical relationships or if it excels at some
at the expense of others.

For Task 2 (Directionality Specification), correctness
was determined by the alignment between the event
order identified by the model and the iconicity status
(iconic/anti-iconic) of the original pair. For example, if
the model identified Image A (presented first) as the an-
tecedent and Image B as the consequent, the answer was
deemed correct only if the ground-truth connective for
the original pair was iconic (i.e., “so” or “then”).

Finally, for Task 5 (Acceptability Rating), evaluation
was based on the Pearson correlation between the scores
generated by the model and the human-provided accept-
ability judgments for the highest-rated connective. To
ensure the values were comparable on a common scale,
both the model ratings and the human judgments were
first normalized using min-max technique. This allowed
us to quantify the degree of alignment between the plau-
sibility assessment of the model and of humans.

5. Results and Discussion
In this Section, we outline and discuss the results obtained
by the models on all tasks. In the presentation of the
results, we abbreviate Causal and Temporal Caus. and

Temp. respectively, and abbreviate Iconic and Anti-Iconic
with Ic. and A-Ic. respectively.

Figure 2: Results for Task 2 on each connective.

First, we evaluate the performance of the VLMs on
causal and temporal reasoning tasks using only visual
inputs. Results from Task 1 (Relation Identification) are
reported in Table 2, while results on Task 2 (Direction-
ality Specification) are shown in Figure 2. We observe a
two-tiered competency. The models can broadly classify
the type of relationship (causal vs temporal) with above-
chance accuracy. However, they largely fail to determine
its underlying structure and directionality. In Task 1,
both models perform significantly better than the random
baseline, indicating that they can extract relevant signals
from the image pairs. A closer look at the results in Table
2 reveals Gemini-flash-2.0 shows a clear proficiency
on temporal relations (87% accuracy), suggesting a default
tendency to interpret visual sequences as a chronological
progression. In contrast, Llama-11b-vision demon-
strates the inverse pattern, excelling at identifying causal
relations (86% accuracy), implying a strong prior to infer
cause-and-effect. This superficial competence however
breaks down when models are required to identify the
directionality of the relationship in Task 2 (Figure 2). The
performance plummets for both models and this failure
is almost entirely attributable to an inability to process
anti-iconic relations, thus revealing a noticeable “iconic-
ity bias”. This bias manifests as a dependency on the
perceptual order of visual events to infer their logical
structure. Llama-11b-vision excels at identifying the
direction for the Temporal Iconic connective then, but
its performance on the anti-iconic connectives is non-
existent. Gemini-flash-2.0 appear more robust, but
displays a similar pattern, with a moderate accuracy on
iconic relations but a sharp drop in performance for anti-



Task Model Accuracy Causal Relations (F1) Temporal Relations (F1)

so (Ic.) because (A-Ic.) then (Ic.) after (A-Ic.)

Task 3
Gemini 0.42 0.48 0.28 0.52 0.09
LLaMA 0.31 0.42 0.02 0.39 0.04

Task 4
Gemini 0.64 0.66 0.65 0.70 0.51
LLaMA 0.33 0.32 0.06 0.46 0.14

Table 3
Model performance with accuracy and F1 Score for connectives on task 3 and task 4

(a) Task 3 (b) Task 4

Figure 3: Comparison of Confusion Matrices for Tasks 3 and 4.

iconic relations (connectives because and after).
Table 3 reports result on Tasks 3 (Connective Selec-

tion) and 4 (Connective Selection With Captions). Task 4,
which provides both images and their corresponding tex-
tual captions, offers an ideal setting to assess the practical
utility of visual grounding in multimodal models. Here,
the models receive both images and their corresponding
textual captions and their performance can be directly
compared to that of the text-only LLMs evaluated on the
same cloze task in the original ExpliCa study [8]. The
multimodal models, particularly Gemini-flash-2.0
achieve overall comparable or slightly better results (0.64
vs 0.62 accuracy) than strong text-only proprietary mod-
els. This suggests that the visual input may actually
provide effective grounding, reinforcing or clarifying
the relationship expressed via text without being a hin-
drance. Similarly, Llama-11b-vision’s multimodal
performance aligns with text-only open-source LLMs
(0.33 vs 0.34 accuracy). Nevertheless, if we look at Confu-
sion Matrices in Figure 3 we observe that they reinforce
the findings from previous tasks: the models’ perfor-
mance are in general dictated by the iconicity of the
underlying relation, even more so than in the original
study. This may suggest that, while visual inputs can
prove beneficial on a surface level, their order of presen-
tation may strongly affect and bias the models’ ability,
especially in anti-iconic cases. This may also be taken
as indication that the models’ training data contained a
significantly larger number of “iconic examples”.

Finally, results for Task 5 are shown in Figures 4 and 5
and Table 4. Recall that the objective of the task 5 is is to
provide a numerical plausibility rating from 1 (completely
incoherent) to 10 (perfectly coherent) for the complete
multimodal event: both images, their corresponding tex-
tual captions, and the human-provided connective link-
ing them. Also recall that Task 5 was evaluated only
on Gemini-flash-2.0. To enable a direct comparison
between the model’s output and the human judgments,
both sets of scores were first normalized to a common
scale using a min-max scaler. The density plots in Figure
4 reveal both a promising alignment and critical diver-
gences. For the iconic connectives, the model’s scores
show a distribution that closely resembles the human dis-
tribution of the connective with the highest rating. Both
distributions are heavily skewed towards higher values
(0.8-1.0), indicating that the model, like humans, find
these iconic constructions highly plausible. Conversely,
a significant discrepancy emerges for the anti-iconic con-
nectives. For because and especially after, the human
ratings show a much broader distribution with a notable
peak in the mid-to-low range, indicating greater uncer-
tainty and lower acceptability in general. To quantify this
alignment, we computed the Pearson correlation between
the model’s ratings and human judgments (see Table 4).
The results confirm the visual trend: We observe a moder-
ate and statistically significant correlation for the iconic
connectives so and then. The correlation is weaker for the
anti-iconic connective because, and becomes statistically
insignificant for after.



Figure 4: Density plots comparing model-generated acceptability ratings with human plausibility judgments

Figure 5: Box plots illustrating the distribution of model-generated acceptability ratings for each connective.

Connective Pearson 𝜌

so (Caus., Ic.) 0.55*
then (Temp., Ic.) 0.53*
because (Caus., A-Ic.) 0.39*
after (Temp., A-Ic.) 0.21

Table 4
Pearson correlation between model acceptability ratings and
human judgments, grouped by connective type. *Indicates a
statistically significant correlation (p < 0.05).

To better understand the sources of divergence be-
tween the model’s and human judgments, particularly for
the cases that the model rated as highly implausible, we
performed an outlier analysis. We specifically focused on
low-scoring outliers, which we formally identified using
the interquartile range (IQR) rule: any data point falling
below the first quartile (Q1) minus 1.5 times the IQR was
flagged. As noted in the original ExpliCa dataset, a subset
of sentences were intentionally designed to be socially
challenging, touching on sensitive topics like religion,
immigration, drug abuse or sex. Our analysis (Figure
5) reveals that a significant portion of the outliers are
directly attributable to this subset. Specifically, 13 out of
the 31 most prominent low-scoring outliers correspond
to these socially challenging sentences. This finding sug-

gests that the model’s performance may be influenced by
its internal bias-mitigation and safety alignment proto-
cols. When confronted with sensitive content, the model
appears to override its linguistic and logical assessment,
assigning a very low acceptability score regardless of the
sentence’s grammatical or causal coherence. This high-
lights a potential conflict where safety-driven heuristics
can interfere with and ultimately degrade the model’s
core reasoning capabilities on specific types of content.

6. Conclusion and future works
This paper investigated the capacity of modern Vision-
Language Models to reason about the structure of events.
We augmented a curated dataset on causal reasoning
with visual stimuli, and designed five tasks of increas-
ing difficulty to asses how well the evaluated systems
handle causal and temporal relationships, particularly
when the logical flow of events diverges from their visual
presentation. The central finding of our experiments is a
profound vulnerability of the tested VLMs to an "iconic-
ity bias." This manifests as a sharp decline in accuracy for
anti-iconic relations, revealing a dependency on percep-
tual order over abstract logic. This weakness in abstract
reasoning is likely rooted in an equally fragile founda-
tional visual understanding. Recent studies using con-
trolled evaluation frameworks [25], have in fact shown



that VLMs struggle to robustly identify even fundamen-
tal object properties (like color or shape) and their basic
spatial relations. Indeed, their performance is heavily
dependent on positional biases, with objects at the center
of an image being recognized more reliably than those
at the periphery. If models fail to build a stable and re-
liable representation of a single scene, their ability to
infer complex causal and temporal relationships across
multiple scenes becomes inherently compromised. The
macroscopic failures we observed (e.g., the iconicity bias)
can therefore be seen as a direct consequence of these
microscopic weaknesses. Furthermore, our analysis indi-
cates that this reasoning is not purely logical; it may also
be modulated by the models’ safety training, which can
produce inconsistent evaluations of causally coherent
but sensitive content. Taken together, these results chal-
lenge the notion that scaling and multimodal pre-training
are sufficient for achieving robust, human-like reason-
ing. The models’ reliance on perceptual heuristics points
to a fundamental gap between their pattern-matching
prowess and their ability to model the more complex,
non-sequential nature of real-world events.

A crucial next step is to investigate whether these
behavioral failures reflect a deeper deficit in the mod-
els’ underlying competence. A more direct evaluation,
drawing on the framework of Hu and Levy [26], would
involve measuring the log-likelihood that models assign
to different event structures. However, this approach
faces a significant technical barrier: the public APIs for
state-of-the-art multimodal models, including Gemini
2.0 Flash, do not currently provide access to token-level
log-likelihoods. This constraint makes it impossible to
directly probe their internal probability distributions. Fu-
ture work should therefore seek to replicate this study
using open-source VLMs where such access is possible.

Limitations
While the present work provide some interesting in-
sights, it is fundamental to point out several of its limita-
tions. First, the two models chosen for the analysis can
be considered as good representatives of open-weights
and closed-weights models in the small to medium-sized
model range; we purposely avoided using larger VLMs as
they tipically come with a high computational (or mon-
etary) cost. However, we must acknowledge that the
paper’s results may not hold for other VLMs.

Second, we leverage CoT prompting, but do not present
here an analysis of the results from the CoT; these could
be point to additional insights. In addition to this, we
must note that we did not perform any prompt-level
optimization to improve the performances of each model
individually.

Third, we do not account for the abstractness of the

stimuli. While the ExpliCa dataset contains mostly con-
crete, everyday scenarios, searching for relations be-
tween their abstractness and the performances of the
model may yield more robust findings.
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A. Prompts

Task 1. Relation Identification (Causal)

The image above c o n t a i n two s e p a r a t e d
images : Image a ( on the l e f t ) and

Image b
( on the r i g h t ) . D e s c r i b e the e l e m e n t s

i n both images . Now , t h i n k
a b s t r a c t l y

about the r e l a t i o n s h i p between the two
images . Focus on the g e n e r a l

cause −
and− e f f e c t p a t t e r n r a t h e r than

s p e c i f i c d e t a i l s . The a n t e c e d e n t
i s the even t t h a t

happens f i r s t and d i r e c t l y c a u s e s
a n o t h e r ev en t ( the cause ) . The
consequent i s

the e ven t t h a t happens as a r e s u l t o f
the a n t e c e d e n t ( the e f f e c t ) . I f
Image a i s

the consequent and Image b i s the
a n t e c e d e n t , respond with Image a .

I f Image b
i s the consequent and Image a i s the

a n t e c e d e n t , respond with Image b .
Do not

p r o v i d e e x p l a n a t i o n s , a d d i t i o n a l t e x t
or commentary .
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Task 1. Relation Identification (Temporal)

The image above c o n t a i n two s e p a r a t e d
images : Image a ( on the l e f t ) and

Image b
( on the r i g h t ) . D e s c r i b e the e l e m e n t s

i n both images . Now , t h i n k about
the

t em p or a l r e l a t i o n s h i p between the two
images . Focus on the sequence o f
e v e n t s

r a t h e r than s p e c i f i c d e t a i l s . I f Image
a f o l l o w s Image b , respond with

Image a .
I f Image b f o l l o w s Image a , respond

with Image b . Do not p r o v i d e
e x p l a n a t i o n s ,

a d d i t i o n a l t e x t or commentary .

Task 2. Directionality Specification

Analyze the r e l a t i o n s h i p between Image
A ( l e f t ) and Image B ( r i g h t ) .

Determine
whether the c o n n e c t i o n i s t e mp o ra l (

one e ven t happens b e f o r e or a f t e r
the o t h e r )

or c a u s a l ( one ev en t d i r e c t l y c a u s e s
the o t h e r ) . Respond with only one

word ,
e i t h e r ’ tempora l ’ or ’ c a u s a l ’ . Do not

p r o v i d e e x p l a n a t i o n s , a d d i t i o n a l
t e x t or

commentary .

Task 3. Connective Selection

Your t a s k i s t o s e l e c t the most
a p p r o p r i a t e word t o connec t the
two images . There

a r e f o u r words :
− So : c a u s a l r e l a t i o n i n which IMAGE A

c a u s e s IMAGE B ;
− Because : c a u s a l r e l a t i o n i n which

the IMAGE B c a u s e s IMAGE A ;
− Then : t e mp o ra l r e l a t i o n i n which

IMAGE A p r e c e d e s IMAGE B ;
− A f t e r : t e mp o ra l r e l a t i o n i n which

IMAGE A f o l l o w s IMAGE B ;
Answer only with the c o n n e c t i v e t h a t

b e s t e x p r e s s e s the r e l a t i o n s h i p
between the

two images . Do not p r o v i d e
e x p l a n a t i o n s or a d d i t i o n a l
d e t a i l s . Your answer has

t o be c o h e r e n t with your p r e v i o u s
r e a s o n i n g .

Task 4. Connective Selection With Captions

You a r e g iven two s e n t e n c e s : S e n t e n c e
A and S e n t e n c e B and a c o u p l e o f
images

( Image A r e f e r s t o S e n t e n c e A and
Image B r e f e r s t o S e n t e n c e B ) .
Your t a s k i s

t o s e l e c t the most a p p r o p r i a t e word t o
connec t the two s e n t e n c e s

l o g i c a l l y and
c o h e r e n t l y . The chosen word shou ld f i t

g r a m m a t i c a l l y and c o n t e x t u a l l y
Format :
S e n t e n c e A : S e n t e n c e A
S e n t e n c e B : S e n t e n c e B
There a r e f o u r words :
− Then ;
− A f t e r ;
− So ;
− Because ;
Thinks about the two s e n t e n c e s and

answer only with the word t h a t
b e s t e x p r e s s e s

the r e l a t i o n s h i p between the two
s e n t e n c e s .



Task 5. Acceptability Rating

E v a l u a t e the a c c e p t a b i l i t y o f
s e n t e n c e s t h a t d e s c r i b e two
e v e n t s l i n k e d by c o n n e c t i v e s : ’ so
’ , ’ because ’ , ’ a f t e r ’ , and ’ then
’ . Ra te each s e n t e n c e on a s c a l e
from

1 t o 10 based on how w e l l the
c o n n e c t i v e e x p r e s s e s the
r e l a t i o n s h i p between

the e v e n t s . Each e ven t i s a l s o
v i s u a l l y r e p r e s e n t e d by an image :

the l e f t image
c o r r e s p o n d s t o the f i r s t s e n t e n c e and

the r i g h t image c o r r e s p o n d s t o
the second

s e n t e n c e . S e n t e n c e : s e n t e n c e a
c o n n e c t i v e s e n t e n c e b . P r o v i d e
only a n u m e r i c a l

r a t i n g between 1 and 1 0 , wi thout
e x p l a n a t i o n s .
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