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Abstract

This paper evaluates the capabilities of Large Language Models (LLMs) on three interrelated linguistic tasks in Latin: preverbed
motion verb identification, spatial relation (SR) classification, and SR type disambiguation. We evaluate GPT-4, Llama, and
Mistral under zero-shot and few-shot settings, using a manually annotated dataset of Latin sentences drawn from different
authors, text types, and historical periods (3rd century BCE - 2nd century CE) as our gold standard. Results show that GPT-4
consistently outperforms open-weight models, particularly in zero-shot scenarios, likely due to its substantial pretraining
exposure to Latin. However, even GPT-4 struggles with syntactic disambiguation, especially in linking proper nouns to
their governing verbs. SR classification performance is skewed by dataset imbalance, and SR type disambiguation errors
often stem from over-reliance on salience over syntax. Qualitative analysis reveals common patterns of overgeneration and
uncertainty across tasks. Our findings underscore the potential of LLMs for historical language processing while highlighting
persistent challenges related to ambiguity, entity linking, and syntactic reasoning. This study represents the first evaluation
of SR recognition in historical languages and lays the groundwork for future domain-adapted fine-tuning approaches in

Computational Humanities.
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1. Introduction

The central aim of this study is to evaluate the ability of
Large Language Models (LLMs) to analyse spatiality in
Latin texts, with a focus on motion events and their syn-
tactic and semantic environments. In Latin, motion verbs,
i.e., verbs denoting movement (cf. class 51 in [1]), often
combine with preverbs — prefixes that attach onto verbal
bases to express (among other things) nuanced spatial
meanings (cf. Section 4.2). For example, the Latin mo-
tion verb eo ‘go’ can be prefixed with different preverbs,
which deeply modify its semantics (e.g., the preverbs ex-
‘out of” and in- ‘into’ generate exeo ‘exit’ and ineo ‘enter’).
This preverbal modification is crucial for encoding spatial
relations (SRs) in Latin, as directionality and argument
structure are frequently expressed jointly by the verbal
root and its preverb. Motion events [2] involve an entity
E moving from a Source (the starting point of motion) to
a Goal (the ending point of motion), and along a Path (the
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set of continuous locations crossed by E' while moving
from the Source to the Goal) [3]. This usually happens
both in literal and non-literal contexts [4].

This paper explores to what extent LLMs can handle
such constructions in Latin, taken as an example of a his-
torical and morphologically complex language. We focus
on preverbed motion verbs as an area that demands the
integration of lexical, syntactic, and spatial information.
To evaluate the models’ performance, we design three
linguistic tasks targeting different layers of interpretation
relevant to motion events (Section 3). Preverbs often pro-
vide crucial cues to argument structure and directionality
(e.g., abeo ‘go away’ vs. adeo ‘go toward/to’), which may
pose significant challenges for automatic disambiguation
with LLMs. This allows us to assess the extent to which
LLMs are able to perform linguistic annotation on chal-
lenging verbal constructions such as preverbed motion
verbs, which are structurally more complex than their
non-preverbed counterparts.

2. Related Work

The application of NLP techniques to Latin has advanced
significantly in recent years, driven by developments in
neural networks, transformer-based architectures, and
the increasing availability of large-scale digital corpora.
A key benchmark in this area has been the Evalatin
shared tasks, held annually since 2020, which provide
a structured evaluation framework for a range of Latin
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NLP tasks [5]. Among the most influential recent develop-
ments in Latin NLP is the introduction of contextualised
language models. LatinBERT [6], a contextualised model
trained on a substantial corpus comprising 642.7 million
words spanning from Classical Antiquity to the contem-
porary period, has been shown to perform well in tasks
such as lemmatisation, part-of-speech (POS) tagging, and
syntactic parsing. LatinBERT has also shown promise
in word sense disambiguation [7, 8] and named entity
recognition [9].

Generative LLMs have demonstrated impressive per-
formance across several NLP tasks [10, 11]. However,
their success relies on vast amounts of data [12, 13],
which is not typically achieved by most historical cor-
pora. The potential of LLMs for Latin is beginning to be
systematically evaluated. Volk et al. [14] showed that
GPT-4-based machine translation substantially outper-
forms previous approaches when tested on 16th-century
correspondence written in Latin and Early New High
German. In addition to translation, they also evaluated
GPT-4 for paragraph-level summarisation of Latin texts,
with its output compared against human-generated sum-
maries.

Parallel to these developments, efforts have been made
to extract SRs from text, not only in computational lin-
guistics, but also in information retrieval and geospatial
analytics. Early approaches relied on rule-based methods
and regular expressions, which have since evolved into
more flexible ML methods. SRs labelling can be char-
acterised as an ML classification task to identify combi-
nations of trajectors (e.g., “ball”), indicators (“on”), and
landmarks (“the ground”) [15]. More recent work lever-
ages deep learning for this task, including convolutional
neural networks for relation extraction [16].

A related task consists of detecting toponyms in text,
usually as part of Named Entity Recognition (NER). A
further step associates toponyms with spatial extensions,
such as georeferenced points or polygons, to facilitate
data integration and analysis — this process is known as
geoparsing, geocoding, toponym resolution, or georefer-
encing. The integration of SR detection with NER has also
been explored, estimating the spatial extent of expres-
sions such as “North Milan” and “10 km from the French
border” [17]. Recently, LLMs have begun to be evalu-
ated for their effectiveness in NER for place detection
and geoparsing. Initial research shows how GPT-based
models can achieve high accuracy in multiple domains,
including geography [18].

Toponyms exhibit strong temporal variation and re-
quire dedicated semantic resources to connect place
names to appropriate spatial scopes. The World His-
torical Gazetteer (WHG)' gathers records from multiple
sources to identify place names across temporal contexts,

!https://whgazetteer.org. Last accessed: 26 July 2025.

such as Byzantium, Constantinople, and Istanbul, us-
ing a linked data approach.” Historical geoparsers must
balance precision with historical sensitivity and domain-
specific training [19]. For Latin, NER faces more chal-
lenges than for English, including orthographic and di-
achronic variation, as well as limited and sparse training
data [20, 21]. To date, the majority of research and tools
focus on contemporary languages, and no Latin evalua-
tion exists for the extraction of SRs and geoparsing.
While the studies briefly reviewed in this section mark
important progress in both Latin NLP and SR extraction,
systematic evaluation of LLMs on spatial language under-
standing in Latin remains largely unexplored. Building
on this foundation, our study investigates whether LLMs
can interpret spatial constructions in Latin with a level
of accuracy that approximates human linguistic analysis.

3. Research Questions and
Evaluation Tasks

We examine whether LLMs can identify and interpret
spatial constructions in Latin in ways that approximate
human linguistic judgment. Specifically, we investigate
three tasks that collectively test the models’ capacity to
perform SR extraction and identification in Latin. This
study is guided by the following research questions:

RQ1: To what extent can LLMs accurately identify pre-
verbed motion verbs in Latin sentences?

RQ2: To what extent can LLMs detect place expressions
that co-occur with preverbed motion verbs — re-
gardless of their syntactic form — and classify
them as indicating the Source, Goal, or Path?

RQ3: To what extent can LLMs correctly perform SR
type disambiguation in Latin, especially in cases
where the distinction between common nouns,
proper nouns (toponyms), and adverbs is ambigu-
ous?

These questions target key linguistic phenomena in-
volved in spatial language understanding and test the
applicability of LLMs to historical languages. Motion
verbs are highly relevant for tasks involving spatial se-
mantics and argument structure, particularly in Latin,
where directional meaning is often distributed across
both the verb and its preverb. Secondly, motion verbs
frequently occur with locative or directional expressions
(e.g., accusative or ablative prepositional phrases), provid-
ing rich ground for testing whether models can correctly
associate verbs with SRs. Finally, the variability in motion
verb semantics (e.g., goal-directed vs. manner-of-motion)

Zhttps://whgazetteer.org/places/12345979/portal/. Last accessed: 26
July 2025.
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allows us to probe whether models distinguish different
types of motion events. Preverbs play a central role in
encoding directionality and spatial modification in Latin
motion constructions. The distinction between proper
and common nouns (Roma ‘Rome’ vs. domus ‘house’) is
important from a cultural perspective to map how mo-
tion verbs relate to the geographical imaginary of the
Roman world. Technically, it also provides more detail
about the ability of LLMs to detect and interpret spatial
references.

To operationalise our research questions questions, we
define three corresponding annotation tasks:

1. Motion Verb Identification (RQ1): Determine
whether a given Latin sentence contains a pre-
verbed motion verb.

2. SR Detection and Classification (RQ2): Iden-
tify the presence of place expressions that co-
occur with preverbed motion verbs and classify
their semantic role in the motion event as Source,
Path, or Goal, regardless of syntactic realization.

3. SR Type Disambiguation (RQ3): Perform SR
type disambiguation with particular attention
to expressions relevant to motion contexts, in-
cluding disambiguation between common nouns,
proper nouns (toponyms), and adverbs.

4. Corpus, Annotation, Dataset

4.1. The Usual Dilemma: Choosing a
Representative Corpus for Latin

Given the fragmentary nature of the surviving material
and the uneven transmission of texts across time, genre,
and register, a fully representative corpus of Latin, as for
historical languages in general, is ultimately unattainable
[22]. Nevertheless, the Latin corpus used in this study
is constructed specifically to address the limitations of
existing resources and to meet the needs of historical
corpus linguistics [23, 24]. Standard annotated corpora,
such as the Latin Dependency Treebank (LDT) [25, 26],
offer valuable syntactically annotated material but are
limited in scope and uneven in their coverage. Many im-
portant authors — such as Plautus, Seneca, and Petronius
— are entirely absent, and key texts like Caesar’s De bello
Gallico and Virgil’s Aeneid are only partially included.
To support quantitative and diachronic analysis, we con-
structed a custom corpus that is sensitive to linguistic
diversity across time and genres. The corpus includes 16
Latin texts by 13 authors, and 265,707 tokens in total®
The corpus texts span from the 3rd century BCE to the
2nd century CE. This temporal range captures the major

3Since punctuation is not present in the original Latin texts, punctu-
ation marks are excluded from the token count.

phases of Latin’s development, across Early, Classical,
and Late Latin [27]. Genre was a key consideration in
corpus design. To avoid the so-called “God’s truth fal-
lacy” [23] — the mistaken assumption that a single text
type or genre can represent the full linguistic reality of a
historical period — we included a range of genres that re-
flect different stylistic and communicative registers. The
corpus contains texts from a wide range of genres: histo-
riography, poetry, theatre, philosophy, novel, oratory. *
This selection allows us to investigate genre-conditioned
variation while also providing a broader basis for general-
isations about Latin syntax. Texts were sourced primarily
from the Perseus Digital Library” [29], except for Ennius’
Annales, accessed via PHI Latin Texts ¢ [30].

Prose is more represented (61.7%) than poetry (38.3%),
reflecting both textual availability and our aim to balance
stylistic registers. Comedy and satire, often considered
closer to spoken Latin, were included despite their un-
derrepresentation in standard corpora. Inscriptions and
epistolography were excluded due to limited data on pre-
verbs. Text selection also accounted for varying author
productivity, with prolific authors like Cicero and Seneca
represented by more than one text, while preserving bal-
ance across genres.

4.2. Selecting Motion Verbs and Preverbs

The study requires a representative sample of motion
verbs exhibiting diverse syntactic behaviour and fre-
quently co-occurring with place expressions in Latin
texts. We select eight verbal bases denoting different
motion domains, and 16 preverbs. This results in a combi-
natorial space of 128 verb—preverb combinations (though
not all are attested). The selection is based on the PRE-
MOVE dataset (cf. Section 4.3), which provides gold-
standard annotations for these verbs and preverbs, en-
suring both linguistic coverage and empirical grounding.
The verbal bases are: eo ‘go’, venio ‘go, come’ (all refer-
ring to generic motion), fugio ‘flee’, gradior ‘walk’, curro
‘run’, volo ‘fly’, no ‘swim’ (manner-of-motion verbs denot-
ing specific types of movements along different media:
ground, sky, water), and navigo ‘sail’ (motion by water
via vehicle). These bases are selected to ensure cover-
age of different spatial event types and to test model
performance across varying lexical, morphological, and
syntactic profiles. Apart from the comitative preverb
cum- ‘together’, denoting accompaniment, all preverbs
possess an inherent spatial meaning. They can be cate-
gorised into four classes, based on the SR they inherently
focus on:

« Source-preverbs: ab- ‘away, away from’, de-

“Labels from [28].
Shttps://www.perseus.tufts.edu. Last accessed: 26 July 2025.
®https://latin.packhum.org. Last accessed: 26 July 2025.
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Table 1
Overview of Latin Texts in the Corpus.

Author Text Century Genre Token Count
Ennius Annales 3rd cent. BCE Poetry, epic 1,194
Plautus Amphitruo 3rd cent. BCE Theatre, comedy 9,988
Mostellaria 3rd cent. BCE Theatre, comedy 9,988
Caesar De bello Gallico 1-4  1st cent. BCE Historiography 20,498
Cicero In Catilinam 1-3 1st cent. BCE Oratory 11,625
De amicitia 1st cent. BCE Philosophy, dialogue 9,471
Sallust Bellum Catilinae 1st cent. BCE Historiography 10,655
Livy Ab Urbe condita 1-2  1st cent. BCE Historiography 39,913
Virgil Aeneid 1st cent. BCE Poetry, epic 63,719
Propertius  Elegies 1.1-1.22 1st cent. BCE Poetry, elegy 4,384
Horace Satires 1st cent. BCE Poetry, satire 7,048
Seneca De ira 1st cent. CE Philosophy, treatise 22,614
Medea 1st cent. CE Theatre, tragedy 5,639
Tacitus Historiae 1 1st-2nd cent. CE  Historiography 11,852
Suetonius  Life of August 2nd cent. CE Historiography, biography 13,915
Apuleius Metamorphoses 1-5  2nd cent. CE Novel 23,358

‘down from’, ex- ‘out, out of”;

« Goal-preverbs: ad- ‘to, towards’, in- ‘into’ (in con-
texts entailing motion), intro- ‘within, inside of”,
pro- ‘forward’, sub- ‘under’ (in contexts entailing
motion);

« Path-preverbs: per- ‘through’, trans- ‘across’;

+ Location-preverbs: circum- ‘around’, inter- ‘be-
tween, among’;

4.3. Gold Standard

To create the gold standard for evaluation, we manually
annotate occurrences of motion verb constructions in
the Latin corpus described above. The annotation is car-
ried out using the INCEpTION platform [31, 32, 33, 34].
INCEpTION’s user-friendly interface and extensible ar-
chitecture proves essential for this study. All annotations
are carried out by a single expert annotator (the first
author). To verify task clarity, we conducted an Inter-
Annotator Agreement (IAA) test on a random sample of
10 sentences, independently annotated by two additional
historical linguists. The test yielded perfect agreement
(IAA = 1.0), confirming that the task is sufficiently clear
and unambiguous to justify relying on a single expert
annotator for the full dataset. The annotation follows the
guidelines described in [35]. Each sentence containing
a preverbed motion verb is analysed to determine the
presence of SRs, following a multi-layered annotation
scheme (cf. Section 3):

1. Motion Verb Identification (Task 1): Identify
whether the sentence contains a target motion
verb.

2. SR Detection and Classification (Task 2): If a
motion verb is present, determine whether it co-
occurs with a SR. When a SR is present, classify
its type as Source, Goal, or Path. Prepositions, case
morphology, and preverb semantics are used to
guide this decision, making the task unambiguous
(e.g., ex urbe ‘from the city’ = Source; in urbem ‘to
the city’ = Goal; per urbem ‘through the city’ =
Path).

. SR Type Disambiguation (Task 3): Annotate
the SR type of spatial expressions, i.e. distinguish
between proper nouns (e.g., Roma ‘Rome’), com-
mon nouns (e.g., domus ‘house’), and adverbs (e.g.,
hinc ‘from here’).

These annotations form part of the PREMOVE dataset
[36], which also contains additional annotation layers as
it is developed within the context of a broader research
project [37].

5. Experimental Setup

5.1. Dataset and Models

Dataset. The experiments are conducted on the dataset
described in Section 4.1, which consists of 1,483 Latin
sentences. Since our focus is on spatial semantics, we
filter out sentences that lacked SR annotations. The re-
sulting dataset used for experimentation comprises 649
sentences (cf. Section 4.1).

SRs are unevenly distributed across the data: Goal re-
lations appears in 68.4% of the occurrences, while Source
and Path occur in only 19.6% and 12.0%, respectively. This
is in line with the Goal-over-Source principle, according



to which languages express the Goal more frequently
because it plays a more central role in the conceptualisa-
tion of motion events, making the event appear complete
and cognitively salient [38]. Moreover, Goal-oriented
motion is often perceived as more intentional and pur-
poseful, while Source expressions suggest less human
agency [39, 40]. To mitigate this imbalance and ensure
a fairer evaluation of model behaviour across relation
types, we also construct three distinct, balanced subsets
of the dataset (cf. Sections 5.2, 6.1). Each subset isolates
a single SR and balances positive and negative examples
for that relation. The resulting subset sizes are as follows:

« Goal subset: 394 sentences
o Source subset: 256 sentences
« Path subset: 150 sentences

The total number of sentences across the subsets ex-
ceeds the total number of sentences in the dataset (649),
as individual sentences can encode more than one type
of SR.

Models. We choose two open-weight LLMs (Mis-
tral and Llama) and one proprietary model (OpenATI’s
GPT) to compare performance across different archi-
tectures and accessibility levels. Open-weight mod-
els are LLMs whose trained parameters (weights) are
publicly released, allowing researchers and develop-
ers to run, fine-tune, and deploy them independently.
In contrast, proprietary models like GPT are closed-
source and accessible only via API or controlled plat-
forms. We use Mistral-7B-Instruct-v0.1, Meta’s
Llama-3.2-3B-Instruct, and OpenAl's GPT-4. We
did not perform any fine-tuning on the open-weight mod-
els. We used the pre-trained versions of the models as
provided on Hugging Face, without further adaptation or
training. The prompts are described in section 5.2. In few-
shot settings, manually annotated examples from our cor-
pus (section 5.1) are randomly added to the prompts. We
evaluate model performance under zero-shot, one-shot,
and five-shot conditions. In the zero-shot setting, the
model is given only the task instruction without any ex-
amples. In the one-shot and five-shot settings, we include
respectively one or five manually annotated examples
from our corpus (Section 5.1) to the prompt. These ex-
amples are selected at random and aim to reflect typical
structures found in the corpus. This design allows us to
test how much model performance improves with lim-
ited supervision. We intentionally selected models that
were not specifically fine-tuned for Latin to ensure a fair
comparison across general-purpose architectures. Our
aim is to evaluate how LLMs trained primarily on large
multilingual or general corpora perform out of the box
on Latin. All experiments are performed locally, with a
machine comprising 8 CPU cores and 8 GB of RAM. The

experiments are implemented in Python 3.9.13, us-
ing the PyTorch and Hugging Face Transformers
libraries. To run the Mistral and Llama models, we use
an A100 GPU (purchased) and a T4 GPU via Google
Colab. Our code is freely available on GitHub’.

5.2. Prompt Engineering

Task 1. Task 1 consists in identifying all inflected forms
of a given Latin verb in one or more input sentences.
The core prompt includes the verb lemma, a linguistic
framing, and clear task constraints. Importantly, the in-
put to the models consists of individual sentences rather
than full passages. These are extracted directly from
PREMOVE (cf. 4.3), in order to isolate sentence-level syn-
tactic and semantic behaviour and reduce computational
cost during inference. The prompt is given below:

This is a task of Latin linguistics. Given
the following Latin sentences, identify all the
forms of the verb ‘{verb}’ across all sentences.
Note that verbs may occur more than once and
in more than one sentence, so PROVIDE ALL THE

FORMS YOU DETECT.

This task is designed to evaluate models’ ability to
identify all inflected forms of a given Latin verb, not to
test their recognition of motion semantics per se. While
the target lemmas are motion verbs, they are explicitly
provided in the prompt to ensure clarity and task focus.
This approach also avoids ambiguity in cases where mul-
tiple motion verbs may occur in the same sentence, some
of which fall outside the scope of annotation. Testing the
models’ ability to detect motion verbs without guidance
would indeed be a valuable direction for future work, but
lies beyond the controlled objectives of this task.

Task 2. The base prompt includes a task explanation
and binary labels for each SR. A representative zero-shot
version is shown below:

This is a task of Latin linguistics. Given
the following Latin sentence, identify all the
Then, additionally

Does the sentence contain a source

forms of the verb ‘{verb}’.
answer:
expression? True or False; Does the sentence
contain a goal expression? True or False;
Does the sentence contain a path expression?

True or False

Task 3. This task consists of classifying a spatial token
linked to a motion verb as either an adverb, a common
noun, or a proper noun. Initial prompts list classification
labels and provide a target token. As early outputs show

"https://github.com/farina-andrea/latin- spatial-relations-1lms. Last
accessed: 26 July 2025.
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that the models confuses proper nouns and their associ-
ation with the target verbs (cf. 6.2), we implement the
prompt to increase specificity:

task of
Given the Latin sentence below, and focusing
‘{verb}’,
the noun or adverb in the sentence governed by
‘{verb}’
‘{relation type}’

This is a Latin linguistics.

specifically on the verb identify
and expressing the spatial relation
Path) .
Classify this token as one of the following:

(Source, Goal, or

- An adverb (e.g., ‘hinc’)

- A common noun referring to a place (e.g.,
‘domus’, ‘forum’)

- A proper noun referring to a place name (e.g.,
‘Roma’, ‘Carthago’).
Sentence: ‘{sentence}’

Answer with exactly two lines, no extra text:
Token: <token>

adverb | common noun | proper noun

6. Results

6.1. Quantitative Evaluation

Task 1. The results of Task 1 are given in Table 2.
Model Setting Precision  Recall Fi-score
Zero-shot 0.09 0.23 0.13
Mistral-7B  One-shot 0.08 0.19 0.1
Five-shots 0.04 0.10 0.06
Zero-shot 0.33 0.12 0.05
Llama-3.2B  One-shot 0.03 0.10 0.05
Five-shots 0.01 0.06 0.02
Zero-shot 0.95 0.98 0.96
GPT-4 One-shot 0.91 0.98 0.94
Five-shots 0.85 0.97 0.91
Table 2

Task 1. Model performances across different shot settings on
all 649 sentences. Highest scores per shot setting are high-
lighted in bold.

GPT-4 strongly outperforms both Llama-3.2-3B-
Instruct and Mistral-7B-Instruct on all 649 sentences. Its
precision, recall, and F1-scores remain consistently high
across all prompt settings, indicating robust zero- and
few-shot generalisation. The open-weight models per-
form poorly and also degrade in performance as shots
increase, suggesting that additional examples may intro-
duce noise rather than aid in disambiguation.

Task 2. Results for Task 2 on all 649 sentences are
shown in Table 3. Performance varies significantly be-
tween GPT on the one hand, and Mistral and Llama on

the other. Mistral and Llama achieve near-identical re-
sults across almost all task conditions. This suggests that
both are relying on similar simplistic prediction strate-
gies, as seen in the uniformly perfect (1.00) or null (0.00)
recall, and very low precision values across categories.
The deceptively strong F1 scores (0.82) for Goal likely
reflect an overgeneralisation strategy: the models tend
to label nearly all inputs as positive, which inflates recall
and leads to misleadingly moderate F1 scores, especially
when the positive class Goal is frequent (cf. Section 5.1).

GPT-4 demonstrates a more balanced performance,
with better alignment between precision and recall. It
shows consistently strong results for Source and Path,
with F1 scores stable across prompting conditions. In
contrast, Goal shows unexpectedly low performance in
one- and three-shot settings, likely due to example sam-
pling variability — none of the randomly selected few-
shot prompts included a Goal instance, which may have
misled the model (cf. 6.1 below).

Literal motion. We evaluate Task 2 on a subset an-
notated exclusively for literal motion verbs, focusing on
physical movement and excluding figurative uses. This
dataset includes Source, Goal, and Path, but is unbalanced
across SRs. Mistral, Llama, and GPT are tested under zero-
, one-, and six-shot settings, with the latter including one
positive and one negative example per relation.

As shown in Table 4, Llama’s and Mistral’s perfor-
mances remain identical and unreliable, marked by low
precision and F1-scores, particularly for Path, which is
never correctly identified. While slight improvements
can be seen for Source under six-shot prompting (F1 = 0.67
for Mistral), overall performance remains inconsistent
and largely unchanged compared to the mixed dataset
(cf. Table 3). For this reason, both models were excluded
from further experiments on Task 2 and the entirety of
Task 3, as it builds upon SR classification performed in
Task 2.

GPT-4 performs considerably better. The Goal relation
continues to be the most robust, reaching an F1-score of
0.83 in the six-shot setting. Performance for Source and
Path, however, remains more variable and consistently
lower, with best F1-scores of 0.61 and 0.54 respectively.
This suggests that even in literal motion contexts, Source
and Path relations are harder to detect reliably — possibly
because Goal is more commonly and overtly expressed
in motion events, giving the model stronger and more
consistent lexical or structural cues to rely on.

Controlled SRs. To check whether the imbalance be-
tween Goal, Source, and Path is contributing to GPT-4’s
lower performance on the Goal class, we test the model
on a three separate subsets of the data. The Task was
split into three separate sub-tasks, each focused on a sin-



Source Goal Path

Model Metric 0-shot  1-shot  3-shots  0-shot 1-shot 3-shots 0-shot 1-shot  3-shots
Precision 0.19 0.00 0.19 0.69 0.69 0.69 0.12 0.00 0.00
Mistral-7B Recall 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00
F1-score 0.33 0.00 0.33 0.82 0.82 0.82 0.21 0.00 0.00
Precision 0.22 0.00 0.19 0.69 0.69 0.69 0.12 0.00 0.00
Llama-3.2B Recall 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00
F1-score 0.36 0.00 0.33 0.82 0.82 0.82 0.21 0.00 0.00
Precision 0.79 0.80 0.80 0.75 0.30 0.30 0.69 0.88 0.88
GPT-4 Recall 0.85 0.80 0.80 0.76 0.30 0.30 0.69 0.88 0.88
F1-score 0.82 0.80 0.80 0.75 0.30 0.30 0.69 0.88 0.88
Table 3

Task 2. Model performance across tasks and shot settings. Highest F1-score values per shot setting are highlighted in bold.

Source Goal Path
Model Metric 0-shot  1-shot  6-shots 0-shot 1-shot 6-shots 0-shot 1-shot  6-shots
Precision 0.26 0.26 0.50 0.65 0.00 0.50 0.14 0.00 0.00
Mistral-7B Recall 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.00 0.00
F1-score 0.41 0.41 0.67 0.79 0.00 0.67 0.24 0.00 0.00
Precision 0.26 0.26 0.26 0.65 0.00 0.00 0.14 0.00 0.00
Llama-3.2B Recall 1.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00
F1-score 0.41 0.41 0.41 0.79 0.00 0.00 0.24 0.00 0.00
Precision 0.59 0.37 0.40 0.71 0.70 0.73 0.35 0.22 0.41
GPT-4 Recall 0.62 0.87 0.78 0.98 1.00 0.96 0.84 0.95 0.78

Fl1-score 0.61 0.52 0.53 0.82 0.82 0.83 0.49 0.35 0.54

Table 4
Task 2. SR classification results on literal motion verb subset (unbalanced). Highest F1-score values per shot setting are
highlighted in bold.

gle SR, with corresponding dataset subsets (cf. 5.1). We The results on the split dataset show more stable per-
restrict this analysis to GPT-4, as it seems to be the only formance across relations (Table 5). For Source, the best
model to produce SR predictions that are not effectively F1 is 0.77 with one-shot prompting; for Goal, recall re-

random (cf. 6.1 above). mains high (0.95) with moderate precision (0.57); and
for Path, the best F1 (0.79) is achieved with two-shot
Relation Setting Precision Recall F1-score prompting.
Zero-shot 0.85 0.57 0.68
Source  One-shot 0.70 0.85 0.77 Task 3. Table 6 summarises the performance of GPT-4
Two-shots 0.64 0.79 0.71 in classifying parts of speech in sentences related to mo-
E Zero-shot 0.58 0.95 0.72 tion. Wefexclude the otliler tWO- models becliluse of il-el;
% Goal One-shot 0.57 0.97 0.72 poor performance on the previous two tasks, on whic

Two-shots 0.57 0.94 0.71 Task 3 relies on (cf. 6.1). Zero- and one-shot prompting
achieve the highest F1 score for common nouns, followed

Path éireo_-ss:;t g;g ggg g;g by adverbs. For proper nouns, recall is high, while pre-
Two-shots 070 0.97 0.79 cision is low. This discrepancy between high recall and

low precision for proper nouns suggests that while GPT-4
Table 5 reliably detects their presence, it often overpredicts and
Task 2 (GPT-4). SR classification results after the dataset split- misattributes them within the sentence structure (cf. 6.2).
ting (balanced). Highest F1-score per shot setting is high-

lighted in bold.



Setting SR Type Precision Recall F1-score
adverb 0.90 0.68 0.77
- Zero-shot  common noun 0.91 0.83 0.87
'El proper noun 0.47 0.92 0.62
© adverb 0.87 0.76 0.81
One-shot®™ common noun 0.92 0.79 0.85
proper noun 0.42 0.83 0.55

Table 6

Task 3 (GPT-4). SR type disambiguation: adverbs, common
nouns, proper nouns, under zero-shot and one-shot prompting.
The one-shot (*) is given on a proper noun instance. Highest
F1-score per shot setting is highlighted in bold.

6.2. Qualitative Evaluation

Task 1. Mistral and Llama show high confusion for
verb identification, with an overgeneration of predictions
that do not include the correct value. They often include
forms that are morphologically or semantically related
to the correct one (e.g., conveniens instead of conveniunt,
subeo instead of subit), though in some cases the forms
are entirely unrelated (e.g., advena, adgredior, excolui in-
stead of aggressus). A qualitative inspection of the (few)
mismatches for GPT-4 reveals that the model occasion-
ally produces multiple verb forms within its output for
a single sentence. Examples include cases such as tran-
sierat, traduxisse and evolo, evigila, where multiple words
are listed. In these cases, the words are not different in-
flected forms of the same lemma, but rather distinct verbs
or nouns. Nonetheless, the correct verb form is always
present among these outputs (evolo, transierat), indicat-
ing that these are instances of overgeneration or model
uncertainty. This behaviour persists despite prompt engi-
neering efforts to constrain the output format, suggesting
a tendency of the model to hedge its predictions in am-
biguous cases. Interestingly, increasing the number of
shots does not improve performance, suggesting that ad-
ditional examples for verb identification may introduce
noise or ambiguity rather than reinforcing the model’s
task-specific behaviour [41].

Task 2. Mistral’s and Llama’s predictions show that
the models randomly assign a positive or negative value
to a specific SR. For Goal, F1 is high as Goal is mostly
present in the examples, due to the Goal-over-Source
principle [38]. GPT-4 has a different performance de-
pending on the relation type and prompt format. For the
Goal, performance drastically drops under the one-shot
and three-shot settings with an unbalanced dataset. In
these cases, the prompt examples possibly do not include
a representative positive instance of Goal, causing a steep
drop in its recognition. Balancing the dataset improves
consistency across SRs, but qualitative errors remain. For
instance, the model often confuses Source and Path when

the contextual cues are subtle or ambiguous. On the
subset limited to literal motion verbs, the model demon-
strates relatively strong recognition of Goal, but struggles
more with Source and Path.

Task 3. The SR type disambiguation task (GPT-4 only)
displays different levels of the models’ accuracy across
parts of speech. While common nouns are identified with
high confidence and accuracy, proper nouns pose some
challenges, as reflected in lower precision and F1 scores.
This finding reinforces the need to treat them separately.
Even after prompt engineering (which yielded a slight
performance improvement), a consistent pattern of error
persists: whenever a proper noun appears in the sentence
but is not governed by the target motion verb, the model
still annotates it as the relevant argument. Although this
is technically a correct identification of a proper noun,
it is incorrect in the context of the task. For instance, in
the sentence:

Nam, ut scis optime, secundum quaestum
Macedoniam profectus, [...] per transi-
tum spectaculum obiturus, in quadam
avia et lacunosa convalli a vastissimis
latronibus obsessus atque omnibus privatus
tandem evado

‘So, as you well know, I had set out
for Macedonia to earn a living. On the
way, planning to take in some sights, I
was ambushed in a remote and marshy
valley by a band of enormous robbers.
Stripped of everything, I finally managed
to escape’ (Apul.Met.1.7)

the model correctly identifies Macedoniam as a proper
noun but incorrectly links it to the motion verb obeo (in
the form obiturus), instead of recognising that it belongs
to a different motion verb (profectus, from proficiscor),
which is not among the verbs considered for annotation.
This may suggest that in the context of proper nouns,
the model relies heavily on their salience and tends to
overlook verb-governance constraints. In other words,
the model appears to prioritise SR type recognition and
semantic prominence over syntactic dependencies when
proper nouns are involved. In other cases, the model oc-
casionally misclassifies common nouns as proper nouns.
Examples include words like fines ‘borders’ or urbs ‘city’,
which are common nouns, but are mistakenly labeled as
proper nouns.

7. Discussion and Conclusion

This study evaluates LLMs across three interconnected
tasks in Latin linguistic analysis: motion verb identifica-



tion, SR classification, and SR type disambiguation. Our
results are encouraging, but they also highlight the sig-
nificant differences in performance between models —
particularly the stark contrast between GPT-4 and open-
weight models such as Llama and Mistral.

GPT-4 achieves high performance across all tasks, al-
ready in zero-shot settings. This is likely due to the
substantial presence of Latin data in its pretraining cor-
pus. While the precise contents of GPT-4’s training data
remain undisclosed, estimates based on GPT-3 suggest
at least 339 million Latin tokens were included [42], and
GPT-4 was trained on significantly more data. This makes
it plausible that GPT-4 has substantial exposure to Latin,
unlike models such as Llama and Mistral, which likely
lack such training data and perform accordingly worse —
often failing completely in zero-shot settings.

For preverbed motion verb identification, GPT-4
achieves strong performance, particularly under zero-
shot settings [41]. SR classification exposes challenges
due to data imbalance, with Goal relations dominating
the dataset. Creating balanced subsets helps obtain more
reliable and interpretable results. SR type disambiguation
proves the most difficult task, with the model frequently
misclassifying proper nouns and failing to correctly link
them to relevant motion verbs. This highlights a gap
in the way the models can use contextual reasoning to
disambiguate entities. This may be mitigated by expand-
ing the length of the input text so to offer more context
to the models. Error analysis suggests that the model’s
dependence on lexical familiarity and world knowledge,
which may not perfectly align with classical contexts,
limits its accuracy.

These findings demonstrate that while LLMs show
promising semantic understanding in Latin, syntactic
and contextual challenges persist. Balancing datasets and
employing few-shot prompting improve performance,
but do not fully resolve issues related to ambiguity and
entity linking.

Future work should focus on domain-specific fine-
tuning with classical corpora, possibly integrating ex-
ternal knowledge sources to enhance disambiguation
and semantic grounding. This combined approach can
better support the complex linguistic features of Latin
and ultimately advance computational tools for classi-
cal language research. In parallel, similar experiments
should be conducted on other languages to assess how
especially open-weight models handle spatial relations
in languages for which they have broader coverage. Such
comparisons can clarify whether the poor performance
observed in Latin stems from language-specific limita-
tions or from more general architectural and training dif-
ferences. Additionally, future studies could isolate prose
texts to control for syntactic regularity, as poetic lan-
guage often introduces greater structural variability and
long-distance dependencies that may challenge model

performance.

Our study — the first on LLMs’ SR recognition in his-
torical languages — clarifies their performance and limits
in this area. It lays the groundwork for more specialised
computational methods in Computational Humanities
and Historical Linguistics, with potential applications
to other historical languages where preverbs are vastly
employed, such as Ancient Greek [43].
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