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Abstract
Error annotation is a defining feature of learner corpora, essential for understanding second-language development. Its
centrality is mirrored by the meticulous effort required for its implementation, which is typically conducted in manual fashion.
In this exploratory study, we investigate the feasibility of automating the task by training large language models (LLMs) in the
context of dialogue-based Computer-Assisted Language Learning (CALL). We experiment with instruction-tuned LLMs across
annotation granularities and prompting strategies. Results show that coarse-grained tags are more reliably predicted than
fine-grained ones, with few-shot example-based prompting outperforming context-only formats. These findings point to the
potential of LLMs for semi-automatic error annotation, while underscoring the need for larger datasets and the effectiveness of
training models through causal LM to handle rare linguistic phenomena. Code and data: https://github.com/paolo-gajo/LEARN
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1. Introduction
Error annotation plays a crucial role in learner corpus
research, a domain of inquiry that, while closely related
to second language acquisition (SLA), is distinguished
by its focus on providing insights into learners’ interlan-
guage systems and acquisition patterns. The underlying
assumption is that errors, defined as the application of an
internalised rule not prescribed by established linguistic
norms [1], are not merely indicators of textual quality,
but a reflection of learners’ evolving competence in their
target language [2].

Regardless of the taxonomy’s level of granularity, error
annotation remains a time-consuming task, susceptible
to inconsistencies in human judgment and inaccuracies
from automatic parsers originally designed for native in-
put [3]. As generative AI architectures begin to populate
linguistic toolkits [4] and mimic established approaches
to language analysis [5], an opportunity arises to reduce
the burden of manual annotation while retaining the
depth of linguistic insight traditionally required for this
complex task. While a limited number of studies do in-
vestigate the use of the technology to annotate pragmatic
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and discourse-level features, including [6] on apologetic
expressions and [7] on evaluative stance, its applications
in the context of learner corpus research remain scarce.

To address this issue, we investigate the feasibility of
training large language models (LLMs) to automate er-
ror annotation, establishing a baseline for comparison
while focusing on an increasingly relevant mode of text
production: human-computer interactions [8]. The task
proves particularly challenging due to the complexity of
the tagset adopted, the model’s limited domain-specific
expertise, and the scarcity of annotated training data
available. Our contributions are two-fold: (i) We release
a novel dataset containing 2,675 manual annotations
of linguistic errors across fifty texts. (ii) Using LoRA-
tuned LLMs, we assess the impact of four combinations
of prompting strategies on automatic error annotation
in human-computer written interactions, establishing a
benchmark for future work in the area.

The rest of the paper is structured as follows: Section 2
outlines the role of learner corpora in SLA research, with
a focus on error annotation practices. Section 3 intro-
duces the dataset and the tagset used in the experiments,
along with a description of the annotation process. Sec-
tion 4 provides specifics on the model architecture, train-
ing, and evaluation. Section 5 lays out the settings ap-
proached for the automatic annotation task. Section 6
reports the results of the experiments. Finally, Section 7
draws conclusions and offers suggestions on future re-
search avenues. In Appendix A, we provide a full list of
the used categories and tags. Appendix B reports the full
results. Appendix C provides information on the used
computational resources.
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2. Background and Motivation
Learner corpora are systematic collections of electronic
texts whose key defining feature lies in the representation
of “language as produced by foreign or second language
(L2) learners” [9]. They are increasingly used in various
strands of empirical SLA research, varying across multi-
ple dimensions: medium (spoken or written), genre (such
as essays, summaries and interviews), learners’ linguistic
background, sampling strategies (synchronic, longitudi-
nal or quasi-longitudinal), intended pedagogical or re-
search purpose, and geographical scope of data collection
(ranging from local to large-scale initiatives) [9]. Each of
these design parameters shapes the corpus analytical po-
tential and determines its suitability for different lines of
linguistic inquiry, particularly those aimed at identifying
developmental trajectories and persistent learner difficul-
ties [10]. Their structured format also makes them a valu-
able resource for the development of natural language
processing (NLP) applications grounded in authentic data
that are used for educational purposes [11].

Central to all of these applications is the identification
and classification of errors, which serve not only as indi-
cators of language proficiency but also as windows into
the evolving interlanguage systems of learners. These
errors are signalled using a predefined taxonomy that
serves the purpose of assigning tags, i.e. labels captur-
ing specific categories and subcategories of errors, to the
corresponding portion of text. To ensure consistency,
annotation typically follows detailed guidelines, which
provide operational definitions and prototypical cases for
each tag. However, the process still requires annotators
to formulate a hypothesis about the nature of each error,
interpreting the distance between the learner’s produc-
tion and the expected target form as either structural or
linguistic per se [2].

In spite of the subjectivity inherently built into the
task, expert judgment has so far offered the most reliable
means of ensuring both consistency and linguistic accu-
racy, striking a delicate balance between introspection
and methodological rigour that underpins high-quality
learner corpus annotation. While projects like the Cam-
bridge Learner Corpus (CLC)1 and the International Cor-
pus of Learner English (ICLE)2 have demonstrated the
value of error-tagged data for SLA research, annotation
remains labour-intensive and demands substantial ex-
pertise and time investment. The existence of automatic
approaches to learner corpus error annotation, by con-
trast, remains largely limited. Although some research
has investigated advanced technologies such as LLMs for
grammatical error identification [12], to the best of our
knowledge no published work has explored their capacity
to perform full-fledged annotation of learner language.

1https://www.cambridge.org/elt/corpus/learner_corpus2.htm
2https://www.uclouvain.be/en/research-institutes/ilc/cecl/icle

This challenge is not just one of scale, but also of
scope. Learner corpora are still predominantly focused
on argumentative or academic writing, mirroring the
types of structured tasks performed in traditional edu-
cational settings. Interactive language use, by contrast,
remains significantly underrepresented and tied to semi-
structured interview formats [13], which only partially
capture the dynamic and co-constructed nature of real-
time communication. This gap is particularly problem-
atic given the centrality of interactionist approaches to
SLA, which emphasise the role of input, opportunity for
output, feedback, and negotiation of meaning in driving
acquisition [14]. As Granger [15] forecasts, the future
of learner corpus research lies not only in enhancing
annotation practices but also in expanding corpora to
new educational contexts, each potentially introducing
distinct patterns of learner language that call for targeted
annotation strategies.

Shifts towards greater variability in learner data am-
plify the need for scalable, adaptive annotation methods.
Our contribution presents an exploratory case study in-
vestigating whether small-scale, open-weight LLMs can
reliably be trained to automate learner error annotation,
evaluating not only their diagnostic capabilities but also
their alignment with linguistic taxonomies and estab-
lished error annotation conventions. More specifically,
we test this feasibility in an unconventional setting for
learner corpora annotation: informal dialogue practice.

3. Data
The dataset employed contains human–machine written
interaction data, contributing to an increasingly relevant
research strand focusing on conversational AI’s effective-
ness for language development [14]. It features English-
as-foreign-language (EFL) productions of Italian univer-
sity students aged 18–25 from diverse degree programs,
most of whom self-report a low-to upper-intermediate
proficiency level. One distinct interaction for each stu-
dent (50 in total) was collected based on a protocol com-
bining one of two different LLM-based chatbots with two
EFL learning scenarios. The chatbots used during the
experimental sessions are ChatGPT,3 a general-purpose
Generative AI tool, and Pi.ai,4 a task-oriented chatbot
specifically developed to engage in natural language con-
versation. The learning scenarios are structured around
two communicative formats that constitute part of stan-
dardised English proficiency tests: open-ended conversa-
tion (small talk) and target-oriented dialogue (role play).
While small talk allows participants to freely express
themselves on past experiences, current interests and
events or future projects, role playing requires them to

3https://chatgpt.com/
4https://pi.ai/talk
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Source Token Count
Learner-Produced (total) 17,730

Small talk 10,548
Role play 7,182

Chatbot-Generated (total) 95,320
Small talk 39,033
Role play 56,287

Total 113,901

Table 1
Dataset token distribution by task type.

use context-sensitive vocabulary and formulaic language.
As such, both tasks prove particularly effective in cover-
ing a wide variety of use cases where multiple examples
of errors might appear, ranging from grammar and lexis
to register and style. The dataset annotation scheme
features structural information on turns and contextual
information on the chatbot used, the tasks performed and
the learner profile. Token counts are reported in Table 1.

3.1. Tagset
Our benchmark for automatic error identification con-
sists of fifty texts manually annotated by two expert
anglicists, using an adapted version of the Louvain Error
Tagging Manual Version 2.0 [16]. While the taxonomy
does not align with any specific formal SLA theory or
L1–L2 pairing, it was selected precisely for its broad
recognition within the learner corpus research commu-
nity, a de facto standard providing a comprehensive map-
ping of errors discussed in the field. The adaptation was
carried out through preliminary pilot tests and includes
several fine-tuning operations that introduce revised use
cases and five new tags. The updated manual comprises
59 categories, spanning across eight domains: digitally-
mediated communication (DMC), form (F), punctuation
(Q), grammar (G), lexico-grammar (X), lexis (L), word
(W), infelicities (Z) and code-switching (CS).

A subset of cases previously assigned to the category
of formal errors, “unwarranted use of mother-tongue
words” [16], constitutes now a separate category: namely,
that of intra- or inter-sentential code-switching. The split
was essential to distinguish between involuntary devi-
ations from the expected spelling norm (covered by F,
along with morphological errors in derivational affixes)
and explicit cases of L1 interference as a coping mech-
anism in second-language communication. In a similar
fashion, all instances of missing capitalisation, includ-
ing lowercase letters at the beginning of a conversational
turn, were assigned to DMC to capture features of texting
that likely reflect the informal nature of the task rather
than language competence alone. These also include ab-
breviations commonly found in the context of instant
messaging, such as BTW or LOL. Finally, neologisms

and calques have been assigned a distinct subcategory
(LWCO) falling within that of lexis (L) rather than form
(F). The rationale behind this change follows on Cervini
and Paone’s [17] classification of intercomprehension
strategies, where both calques and neologisms are con-
ceived as pertaining to the lexical dimension of commu-
nication. The remaining macro-categories are retained
as originally defined [16]. Grammatical Errors (G) are
violations of standard grammar rules that affect syntac-
tic structure, including subject–verb agreement, misuse
of tenses, article errors, or problems with word forms,
such as pronouns and determiners. Lexico-Grammatical
Errors (X) involve combination patterns specific to the
word rather than sentence-wide grammar, including de-
pendent prepositions or verb complementations. Lexical
Errors (L) concern vocabulary choices that do not match
the intended meaning or context, hence coming across
as semantically awkward or stylistically inappropriate.
Word Errors (W) target imbalances in a sentence caused
by omitting necessary words, adding superfluous ones,
or placing words in an unnatural or incorrect order. Punc-
tuation Errors (Q) cover incorrect, missing, or excessive
use of marks, such as commas, periods, or colons. Finally,
Infelicities (Z) address stylistic concerns that, while not
strictly errors, may require reformulation for the sake
of clarity or naturalness (Z). See Table 8 in Appendix A
for a complete list of the tags used, together with a brief
description of their coverage for each use case.

Errors were marked using inline XML-style tags
of the format <TAG corr="correction">incorrect
text</TAG> via the Université Catholique de Louvain
Error Tagging Editor (UCLEE).5 In case of the addition
of missing words or the omission of redundant ones,
the format is <TAG corr="correction">\0</TAG>
or <TAG corr="\0">incorrect text</TAG>, respectively.
The software supports the insertion, editing and process-
ing of error tags using a preferred tagset. To accommo-
date the specific requirements of our task, we uploaded a
custom .tag file reflecting the necessary modifications we
had implemented. A truncated example of file annotation
can be found in Figure 1.

In line with the Louvain Manual, corrections were min-
imal and hypothesis-driven, ensuring that tags reflect
plausible learner intentions and do not result in specu-
lative rewriting of the original text. Tags were assigned
based on the erroneous form itself, using the shortest
possible span required to isolate it. Regional spelling
variants (e.g., British and American English) were not
flagged, as participants received no instruction on pre-
ferred norms. Likewise, punctuation errors were anno-
tated only when they hindered readability, in recognition
of informal communication habits. Cases where multiple
errors overlapped were nested within one another, with

5https://oer.uclouvain.be/jspui/handle/20.500.12279/968
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<?xml version="1.0" encoding="utf-8"?>
<file name="id_1.txt" tagset="uclee-en-2.0.tag"> <text
id="id_1" area_of_study="Social sciences" age="24" [...]>

<task type="small talk">
<turn type="chatbot" who="Pi.ai">Hey there, great to
meet you. I’m Pi, your personal AI. [...]</turn>
<turn type="student">Hi</turn>
<turn type="chatbot" who="Pi.ai">Hey User!
How’s everything going on your side? [...]</turn>
<turn type="student"><DMCC
corr="How">how</DMCC> are you today?</turn>
[...]

</task>
<task type="role play">

<turn type="student"><DMCC
corr="You">you</DMCC> are an encouraging tutor
who helps students improve their <DMCC
corr="English">english</DMCC> by engaging in role
play <FS corr="activities">actvities</FS>.>[...]</turn>
<turn type="chatbot" who="Pi.ai">Great idea! Let’s
start the role play. As the Restorative Justice, I’m
interested in [...]</turn>
[...]

</task>
</text>
</file>

Figure 1: XML annotation output of the UCLEE software.

Table 2
Distribution of the tags in the data used for training, develop-
ment, and testing.

Tag #
DMCC 927 LP 45 GDO 13 XNCO 4
FS 314 LSV 45 XNUC 12 XADJCO 4
GA 149 LSN 43 QR 12 GPD 3
LSPR 80 CSINTRA 33 CSINTER 11 LCC 3
GNN 80 GVN 32 GPI 10 LCLC 3
GPP 72 XVPR 28 GADVO 9 GADJO 2
GVT 64 GNC 27 GDI 8 XPRCO 2
WO 63 QC 24 GDT 8 GPU 2
QM 60 GVNF 23 GADJCS 7 GPO 2
Z 54 DMCA 23 XNPR 7 XADVPR 1
LWCO 52 GPR 20 GDD 6 LCLS 1
XVCO 51 GVM 18 QL 6 GPF 1
WM 51 LSADV 16 FM 5
GVAUX 51 GWC 15 XADJPR 5
WR 49 LSADJ 15 LCS 4

spelling errors being considered the lowest level, i.e. the
first correction to be applied.

Inter-annotator agreement (IAA) was calculated on
five separate texts using the Gamma coefficient [18], a
metric suited to evaluating categorical labels with over-
lapping text spans. Annotation files were first parsed
to extract error tags and their corresponding charac-
ter offsets using a custom XML processing function.
The agreement was recorded only when annotators ap-

plied the same error tag to mark the exact same char-
acter span as erroneous. Scores registered a mean of
0.77024±0.09270. The computation was repeated a sec-
ond time on all tags except those targeting formal spelling
(FS) and digitally-mediated communication (DMC). That
is, taking into account the most subjective among the
sub-categories in our tagset, which account for 53.60% of
all the tagged issues. The results show an agreement of
0.74698± 0.13027. Given the strictness of our criteria,
we consider the obtained IAA to be highly satisfactory
and reliable, since 𝛾 < 0 signifies worse-than-random
agreement and the upper bound is 𝛾 = 1.

3.2. Data processing
The data are compiled by filtering out the chatbot re-
sponses and splitting the collection into training, devel-
opment, and testing partitions with an 80/10/10 split.
Five different (fixed) seeds are used to split the data and
initialise model states, which helps us mitigate variance
in the results. Table 2 provides information on the distri-
bution of the tags, which has a long tail formed by rare
tags, 22 of which have fewer than 10 occurrences.

As exemplified in Figure 2, we experiment with two
types of in-context learning (ICL) sections (bottom row),
each using fine- or coarse-grained tags (top row), for a to-
tal of four prompt combinations. The prompt starts with
a system message defining the LLM persona, followed
by the instruction. The macro categories or tags are then
optionally listed. In the first experimental setting, a vary-
ing number of ICL examples is included. For all data
splits, pairs of examples are sampled at random solely
from the training set, across any of the student-chatbot
conversations. We sample an equal number of examples
with and without error annotations.6 Finally, the task is
repeated to mark the target sentence.

In the second setting, we provide the model with the
context of the conversation to which the target message
belongs. Note that in this case, what we divide in 80/20/20
splits is the list of conversations, rather than the individ-
ual messages. Since conversations do not all have the
same size, in this case each seed produces different split
sizes, as shown in Table 3.

In our experiments, we wish to showcase the impact
of using random annotated instances vs unannotated
context. Therefore, although the data partitions used in
the two settings are produced in different ways, we still
deem our approach to be valid, considering the use of
five different seeds.

6The original and the annotated utterances are separated by ###
symbols to avoid any subwords being merged with the separator
by the used tokenisers.



You are an AI specialized in the task of annotating grammatical errors.
Annotate the target sentence below with the following tags, in XML style. Reproduce the full sentence and annotate each error.
The following are the tags you should use for annotation:

<DMCC>: Capitalization issues. [...]
<WO>: Errors in word order.

Code-Switching: use of L1 (native language). [...]
Infelicities: stylistic concerns (not strictly errors).

Below are reference examples:
Everything is going fine. How are you?###Everything is
going fine. How are you? [...]
The food is not very good in spain and but the atmo-
phere Is fantastic###The food is not very good in <DMCC
corr="Spain">spain</DMCC> <LCC corr="\0">and</LCC>
but the <FS corr="atmosphere">atmophere</FS> <DMCC
corr="is">Is</DMCC> fantastic

Below are the chat messages preceding the target sen-
tence:
Pi.ai: Hey there, great to meet you. I’m Pi, [...]
student: Hi pi can we do a roleplay to help me practice
my english?
Pi.ai: Absolutely, User! Role-playing can be a great way
[...] student: I would like to do a customer service scenario
Pi.ai: Sure thing! Let’s start the [...]

Annotate the following target sentence, without providing any explanation:
Yes please, I would like a bottle of water and a glass of wine###

Figure 2: Prompt example with fine-grained tags (top left) or coarse categories (top right), followed by either randomly
sampled pairs of examples (bottom left) or previous chat context (bottom right). All four combinations are possible.

Table 3
Split sizes for the training, development, and testing partitions,
for the random ICL sampling and context prompt settings.

Setting Train Dev Test
Rng ICL 831 104 104
Context 822.6 ±11.586 109.0 ±14.656 107.4 ±11.740

4. Model
For our experiments, we adopt pre-trained decoder-only
Transformer [19] models of the LLaMA 3 series [20],
publicly available through Hugging Face.7 The models
we choose are first pre-trained on large unstructured
corpora and then fine-tuned on instruction prompts with
a causal language modeling objective (NLL):

ℒ(𝜃) = − 1

𝑁

𝑁∑︁
𝑖=1

log(𝑝𝜃(𝑤𝑗 |𝑤<𝑗)). (1)

Then, they are instruction-tuned through supervised fine-
tuning and reinforcement learning from human feedback
using direct policy optimization [20]. This effectively
makes them chatbots capable of fulfilling user requests.

We fine-tune the models with the same objective as in
Eq. (1) on the prompts as described in Section 3.2.8 We
calculate the loss for both the prompt and the completion,

7https://huggingface.co
8The model needs to be given the prompt in a chat template
(https://huggingface.co/docs/transformers/en/chat_templating#
applychattemplate) which we omit here for clarity.

since we want the model to learn to predict the annotated
sentences not just from the target sentence, but also from
the tags and the examples included in the prompt. In
other words, we simultaneously train the model on a
large amount of sampled examples within the prompt,
through teacher forcing, and we also instruction-tune it
to predict the desired target sentence.

The architecture of these models consists in a token/po-
sitional embedding layer, followed by a stack of decoders,
with a language modeling classifier on top. Each decoder
comprises a grouped-query attention layer [21], followed
by a set of MLP layers each using a SwiGLU activation
function [22]. We update the weights of the decoder
blocks with LoRA [23], only targeting the key, query, and
value matrices 𝑄, 𝐾 , 𝑉 of the attention layers:

Attention(𝑄,𝐾, 𝑉 ) = Softmax
(︂
𝑄𝐾⊤
√
𝑑𝑘

+𝑀

)︂
𝑉

where 𝑀 is the matrix filled with zero values in the
lower triangular part and −∞ elsewhere, and 𝑑𝑘 is the
output dimension of 𝑄 and 𝐾 . The attention and MLP
layer parameters are kept frozen during training. The
original input to these layers is simultaneously processed
through LoRA components consisting of weight matrices
𝐵 ∈ R𝑑1×𝑟 and 𝐴 ∈ R𝑟×𝑑2 , where 𝑟 ≪ 𝑑1, 𝑑2. Here, 𝑟
represents the low-rank projection dimension, while 𝑑1

and 𝑑2 correspond to the input and output dimensions
of each respective layer. During training, only the LoRA
matrices 𝐵 and 𝐴 receive parameter updates. Thus, the
forward pass of an input x through an MLP with frozen
weight 𝑊0 is modified as:

https://huggingface.co
https://huggingface.co/docs/transformers/en/chat_templating#applychattemplate
https://huggingface.co/docs/transformers/en/chat_templating#applychattemplate


𝑊0x+
𝛼

𝑟
𝐵𝐴x = (𝑊0 +∆𝑊 )x = 𝑊1x

The scalar 𝛼 acts similarly to the learning rate ad-
justment provided by the Adam optimizer [24], accord-
ing to [23]. Each module combines the outputs of the
frozen layer and its corresponding LoRA layer through
element-wise addition. We initialize the LoRA blocks
using 𝑟 = 𝛼 = 16, without biases or dropout.

We train for 3 epochs using a batch size of 4, without
gradient accumulation. We employ a learning rate of
2 × 10−4 with 5 warm-up steps, weight decay of 0.01,
and AdamW [25] as the optimization algorithm. Prior to
fine-tuning, Llama-3.3-70B-Instruct is quantized at 4-bit
precision with QLoRA [26], using bitsandbytes.9

Due to the sparsity of low-occurrence tags, we focus
on evaluating the model on the most common ones using
micro-averaged precision, recall, and F1-measure. The
prediction of a tag is considered correct only if both the
tag and the associated text match. For example, in the
sentence <DMCC corr="Not">not</DMCC> really,
what is your proposal <QM corr="?">\0</QM>
the prediction would be incorrect if the tag DMCC was
assigned to “not really” rather than just “not”. As regards
this example, also note that the model is required to
generate “\0” tokens, representing omitted words.

Each model is fine-tuned and evaluated on five differ-
ent seeds, for which we report the average performance
along with the standard deviation. During evaluation,
we allow the model to generate up to 1,000 new tokens,
which we deem sufficient based on instance lengths. We
select the best epoch based on the highest micro-averaged
F1-measure on the development set. We report micro-
averaged metrics, since macro-averaging does not pro-
vide a faithful picture of model performance, due to the
long tail of low-occurrence classes (Table 2).

5. Experiments
We task the fine-tuned models to automatically annotate
linguistic errors in sentences written by learners of En-
glish. We experiment with two levels of granularity of
error classification, one at the level of the macro category
(e.g., “Form”, or “Punctuation”) and one at the tag level,
i.e. those listed in Table 2.

We also use two different types of prompts. The first
includes 𝑁ICL ∈ {0, 2, 4, 6, 8, 10} pairs of unannotated
and annotated student messages. We vary the number
because an insufficient amount might not provide the
model with enough information to produce optimal per-
formance, while an excessive quantity might excessively
shift attention from the target task. The second type of

9https://github.com/bitsandbytes-foundation/bitsandbytes

Table 4
Overall micro-averaged results for Llama-3.1-8B-Instruct and
Llama-3.3-70B-Instruct on the fine-grained classification task,
using randomly sampled ICL examples. Best in bold.

Tags 𝑁ICL F1 Precision Recall
Llama-3.1-8B-Instruct

×

0 0.397 ±0.034 0.435 ±0.051 0.367 ±0.025

2 0.416 ±0.040 0.427 ±0.053 0.407 ±0.038

4 0.424 ±0.029 0.431 ±0.036 0.419 ±0.026

6 0.424 ±0.023 0.421 ±0.030 0.427 ±0.018

8 0.412 ±0.022 0.407 ±0.028 0.417 ±0.016

10 0.405 ±0.045 0.403 ±0.048 0.407 ±0.044

✓

0 0.377 ±0.043 0.425 ±0.063 0.341 ±0.035

2 0.421 ±0.041 0.440 ±0.048 0.405 ±0.041

4 0.401 ±0.035 0.420 ±0.041 0.384 ±0.036

6 0.399 ±0.025 0.412 ±0.043 0.388 ±0.016

8 0.407 ±0.050 0.400 ±0.061 0.415 ±0.040

10 0.399 ±0.028 0.401 ±0.039 0.399 ±0.019

Llama-3.3-70B-Instruct

× 6 0.472 ±0.029 0.470 ±0.027 0.476 ±0.034

Table 5
Overall micro-averaged results for Llama-3.1-8B-Instruct and
Llama-3.3-70B-Instruct on the coarse-grained classification
task, using randomly sampled ICL examples. Best in bold.

Tags 𝑁ICL F1 Precision Recall
Llama-3.1-8B-Instruct

×

0 0.440 ±0.024 0.397 ±0.014 0.494 ±0.044

2 0.439 ±0.033 0.434 ±0.036 0.445 ±0.037

4 0.450 ±0.030 0.436 ±0.033 0.467 ±0.041

6 0.460 ±0.047 0.451 ±0.050 0.470 ±0.047

8 0.436 ±0.037 0.437 ±0.029 0.435 ±0.046

10 0.446 ±0.035 0.446 ±0.036 0.448 ±0.050

✓

0 0.424 ±0.031 0.382 ±0.031 0.478 ±0.042

2 0.456 ±0.044 0.437 ±0.043 0.477 ±0.045

4 0.440 ±0.030 0.454 ±0.035 0.432 ±0.056

6 0.466 ±0.018 0.464 ±0.026 0.469 ±0.014

8 0.449 ±0.033 0.463 ±0.032 0.436 ±0.036

10 0.449 ±0.050 0.451 ±0.047 0.448 ±0.058

Llama-3.3-70B-Instruct

✓ 6 0.502 ±0.024 0.514 ±0.037 0.492 ±0.031

prompt includes the 𝑘 = 10 chat messages preceding the
student message that the model is tasked to annotate.

We use Llama-3.1-8B-Instruct to first conduct a hyper-
parameter search as regards the number of in-context
learning examples to use and whether to include the tags
in the prompt. Then, we use the bigger Llama-3.3-70B-
Instruct with the best combination of hyperparameters.

6. Results
Random sampling ICL The results marginalised
across all classes for the fine-grained setting are listed in
Table 4. The best performance is achieved with 𝑁ICL = 6

https://github.com/bitsandbytes-foundation/bitsandbytes


pairs of examples, 6 positive and 6 negative. This shows
our concerns with finding the best number of examples
were founded, since higher amounts lead to increasingly
worse performance. However, most of the performance
gain is obtained by going from 𝑁ICL = 0 to even just
providing 2 pairs of examples, even without the model
being shown the meaning of the tags. Indeed, overall
the best results for Llama-3.1-8B-Instruct are achieved
when not including the tags and their descriptions in the
prompt. Gajo and Barrón-Cedeño [27] report similar re-
sults, where increasing the number of examples yielded
diminishing returns when extracting RDF triples from
texts and overly long lists of references in the prompt
diluted model attention away from the target task.

Fine-tuning Llama-3.3-70B-Instruct with the best hy-
perparameter 𝑁ICL = 6 and no tags in the prompt, the
model obtains a micro-F1 of 0.472. Out of five seeds, the
highest validation performance is obtained twice on the
first epoch, twice on the second, and only once on the
third. Since the model is only shown 831 training exam-
ples and the first and second epochs already provide the
best performance, the model seems to fit very quickly to
the patterns it needs to recognize to identify errors.

The overall results for the coarse-grained categories
are reported in Table 5. The performance is overall
slightly higher when including the categories in the
prompt. In this case, since only 9 classes are listed, the
model is able to make good use of the provided informa-
tion. Indeed, not only are the mean scores higher, but
the standard deviation is also lower at 𝑁ICL = 6, which
is the setting that yields the highest performance with
Llama-3.1-8B-Instruct. As for Llama-3.3-70B-Instruct, per-
formance is greater, but with a smaller gap between the
two models, compared to the fine-grained tags.

The full results for each fine-grained tag at all values
of 𝑁ICL are reported in Table 9 in Appendix B. At the
fine-grained level, only a few high-frequency tags such
as DMCC (927 instances) and FS (314) are predicted reli-
ably. Most of the others are either predicted with very
high standard deviations or do not receive predictions at
all, due to the sparsity of labels. Nonetheless, the perfor-
mance for several morphosyntactic tags, e.g. GNN (80),
GPP (72) and GVAUX (51) exhibits gradual improvements
with increasing values of 𝑁ICL, indicating that training
the model on a higher number of examples might be
beneficial for some classes.

Based on the distribution shown in Table 2, the amount
of training instances per class indeed seems to strongly
correlate with performance. However, Z (54), used to
indicate stylistic problems, is never predicted correctly by
either of the models, despite having a number of instances
comparable to that of much better-performing classes,
e.g. QM (60) or WM (51), respectively used for missing
punctuation and words. Since the latter clearly affect
the format and structure of the sentence via omission,

Table 6
Overall micro-averaged results for Llama-3.1-8B-Instruct and
Llama-3.3-70B-Instruct for the context prompt setting, using
fine-grained (ℱ ) and coarse (𝒞) categories.

Tags F1 Precision Recall
Llama-3.1-8B-Instruct

ℱ × 0.221 ±0.079 0.256 ±0.071 0.198 ±0.083

✓ 0.207 ±0.091 0.237 ±0.100 0.194 ±0.093

𝒞 × 0.234 ±0.090 0.275 ±0.097 0.208 ±0.088

✓ 0.186 ±0.056 0.214 ±0.100 0.191 ±0.075

Llama-3.3-70B-Instruct

ℱ × 0.395 ±0.109 0.360 ±0.088 0.375 𝑝𝑚0.095

𝒞 × 0.455 ±0.084 0.417 ±0.076 0.434 𝑝𝑚0.077

this hints at the fact that the model more easily handles
structural errors, compared to those where style and
semantics are involved.

Table 10 in Appendix B reports the results for each
coarse-grained category for all values of 𝑁ICL.

Context ICL As shown in Table 6, the performance
using context prompts is much lower than when using
randomly sampled example pairs. An analysis of Llama-
3.1-8B-Instruct’s predictions shows that, at times, the
model makes mistakes even on easy instances of the DMC
category, i.e. the one with overall highest results. For ex-
ample, in “student: It’s perfect! Thank <XVCO
corr="you">u</XVCO> so much”, the model assigns
XVCO (errors with verb complementation) rather than
DMCA to a clear-cut case of Internet-style abbreviation.
Considering the performance on this class is above 0.800
when using random ICL example pairs, this is a clear
hint that the context does not provide useful information
for the best-performing categories. Indeed, the macro-
categories for which contextual information is likely to
be most relevant are lexis (L) and infelicities (Z), where
discourse-level or pragmatic cues are critical in assessing
appropriateness and distinguishing genuine errors from
stylistic deviations. However, as shown in Table 7, the
performance for these categories is very low (L) or null
(Z). For Llama-3.1-8B-Instruct, the performance on the L
category (F1 = 0.070) is worse than the one obtained in
the random ICL sampling setting, even with 𝑁ICL = 0
(F1 = 0.091, see Table 10). Therefore, even in the cases
in which the model would supposedly benefit from being
provided the context of the conversation, simply having
it memorize decontextualized examples through causal
language modeling provides better performance. Indeed,
as already mentioned in the previous section, the model
likely pays more attention to the shallow structure of the
sentence rather complex semantic relationships. Thus,
having it learn annotations directly from XML-formatted
examples provides superior performance. This is also



Table 7
Micro-averaged F1 results per category for Llama-3.1-8B-
Instruct and Llama-3.3-70B-Instruct with the best-performing
𝑁ICL = 6 using coarse-grained categories. C=CS, D=DMC.

Rng (𝑁ICL = 6) Context (𝑘 = 10)
Tags 8B 70B 8B 70B

C × 0.050 ±0.112 0.000 ±0.000

✓ 0.197 ±0.192 0.175 ±0.186 0.000 ±0.000 0.053 ±0.119

D × 0.813 ±0.059 0.512 ±0.149

✓ 0.827 ±0.051 0.854 ±0.036 0.552 ±0.130 0.759 ±0.088

F × 0.534 ±0.047 0.269 ±0.088

✓ 0.497 ±0.123 0.551 ±0.090 0.155 ±0.060 0.433 ±0.103

G × 0.247 ±0.039 0.094 ±0.045

✓ 0.306 ±0.025 0.333 ±0.041 0.075 ±0.037 0.242 ±0.061

Z × 0.000 ±0.000 0.000 ±0.000

✓ 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

X × 0.068 ±0.064 0.000 ±0.000

✓ 0.064 ±0.095 0.117 ±0.149 0.000 ±0.000 0.038 ±0.054

L × 0.157 ±0.054 0.065 ±0.042

✓ 0.168 ±0.076 0.201 ±0.051 0.070 ±0.050 0.103 ±0.048

Q × 0.194 ±0.129 0.000 ±0.000

✓ 0.222 ±0.102 0.262 ±0.102 0.000 ±0.000 0.184 ±0.200

W × 0.081 ±0.063 0.000 ±0.000

✓ 0.066 ±0.067 0.117 ±0.129 0.000 ±0.000 0.050 ±0.090

clear based on the fact that Llama-3.1-8B-Instruct can
outperform its bigger counterpart just by changing the
prompting strategy, although the performance obtained
by Llama-3.3-70B-Instruct when using context prompts
is closer to the one obtained with random sampling ICL.

The context ICL results for all fine-grained tags can be
found in Table 11 in Appendix B.

7. Conclusions
In this study, we have built a corpus of human-computer
interactions, assessing the feasibility of fine-tuning LLMs
to automatically carry out error annotation. Through a
series of experiments across two annotation granularities
(coarse and fine-grained), we evaluated the capabilities
and limitations of both Llama-3.1-8B-Instruct and Llama-
3.3-70B-Instruct to learn through causal LM from two
prompting paradigms. The first included the conversa-
tion context of the message requiring annotation, while
the other entailed a varying number of randomly sampled
ICL examples. Both prompt types optionally included
explicit information about the target error classes.

Perhaps unsurprisingly, coarse-grained annotation ob-
tains better scores than fine-grained tagging across all
configurations, suggesting the viability of a hybrid, semi-
automatic pipeline where LLMs handle broader error
categories before finer distinctions are resolved through
human post-editing or specialised tools. Model perfor-

mance improved via ICL examples, peaking around 6
pairs of positive and negative instances, before exhibiting
diminishing returns. This trend held across both granu-
larities and prompt types, although not always linearly.
In particular, random example-based prompts yielded
substantially higher and more stable results compared to
context-only ones, for both the fine- and coarse-grained
annotation tasks, suggesting that focused demonstra-
tion of error-tag mappings better supports autoregressive
modeling than situational grounding. The lower effective-
ness of context-only prompts may also reflect a mismatch
between the data and the annotation scheme, where error
identification, at least of the issues observed in these con-
versations, is mostly self-contained within each learner’s
turn. Including additional text to be processed likely
dilutes the model’s attention, which is spread across a
higher number of tokens, ultimately lowering learning
effectiveness.

At a tag-specific level, results highlight the challenges
of sparse class supervision for this task, with only a
handful of high-frequency labels being predicted reli-
ably. Nonetheless, we provide evidence of LLMs being
able to internalise recurring learner patterns through
causal LM, given they are shown enough instances.

Variation across the explored hyperparameters was
modest. This implies that the performance ceilings are
primarily determined by task complexity and data spar-
sity, rather than the suboptimal nature of specific training
approaches.

In future work, we plan to produce synthetic training
data for the task approached in this work, in order to im-
prove model performance. In addition, we wish to extend
the annotation to additional resources and leverage them
for the development of better automatic error annotation
systems. Finally, we aim to evaluate model performance
also in terms of the proposed corrections.
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Table 8
Categories (in italics), descriptions, and references for the error tags used in corpus annotation.

Tag Description Tag Description
Digitally-Mediated Communication
<DMCC> Capitalization issues. <DMCA> Use of abbreviations in digitally mediated communi-

cation (e.g., OK, lol, etc.).

Form
<FS> Spelling errors. <FM> Morphological errors involving derivational affixes.

Punctuation
<QM> Missing punctuation. <QR> Redundant punctuation.
<QC> Confusion of punctuation marks. <QL> Punctuation mark instead of lexical item (or vice

versa).

Grammar
<GDD> Errors with demonstrative determiners. <GDO> Errors with possessive determiners.
<GDI> Errors with indefinite determiners. <GDT> Errors with other types of determiners.
<GA> Errors with articles (definite/indefinite/zero). <GADJCS> Errors with comparative or superlative adjectives.
<GADJN> Errors with adjective number. <GADJO> Errors with adjective order.
<GADVO> Misplaced adverbs. <GNC> Errors with noun case (e.g., Saxon genitive misuse).
<GNN> Errors with noun number. <GPD> Errors with demonstrative pronouns.
<GPP> Errors with personal pronouns. <GPO> Errors with possessive pronouns.
<GPI> Errors with indefinite pronouns. <GPF> Errors with reflexive or reciprocal pronouns.
<GPR> Errors with relative or interrogative pronouns. <GPU> Unclear pronominal reference.
<GVAUX> Misuse of primary, modal, or semi-auxiliaries. <GVM> Errors with verb morphology.
<GVN> Errors with subject-verb agreement. <GVNF> Errors in -ing, infinitives, or relative clauses.
<GVT> Misuse of tense or aspect. <GVV> Errors with active/passive voice.
<GWC> Confusion between word classes.

Lexico-Grammar
<XADJCO> Errors with adjective complementation. <XNCO> Errors with noun complementation.
<XPRCO> Errors with preposition complementation. <XVCO> Errors with verb complementation.
<XADJPR> Errors with adjective-dependent prepositions. <XADVPR> Errors with adverb-dependent prepositions.
<XNPR> Errors with noun-dependent prepositions. <XVPR> Errors with verb-dependent prepositions.
<XNUC> Errors in uncountable/countable noun use.

Lexis
<LCC> Errors in coordinating conjunctions. <LCS> Errors in subordinating conjunctions.
<LCLS> Errors with single logical connectors. <LCLC> Errors with complex logical connectors.
<LSADJ> Conceptual/collocational errors with adjectives. <LSADV> Conceptual/collocational errors with adverbs.
<LSN> Conceptual/collocational errors with nouns. <LSPR> Conceptual/collocational errors with prepositions.
<LSV> Conceptual/collocational errors with verbs. <LWCO> Coined words or calques.
<LP> Errors in fixed word combinations, including idioms, compounds, and phrasal verbs.

Word
<WM> Missing words. <WR> Redundant words.
<WO> Word order errors.

Code-Switching
<CSINTRA> Code-switching within a sentence. <CSINTER> Code-switching between sentences or turns.

Infelicities
<Z> Stylistic problems or unclear sequences requiring reformulation.

A. Full list of tags
In this section, we report on the tagset used for the learner
error annotation task, a revised version of the UCLou-
vain Error Editor Version 2. Table 8 lists all of the error
macro- and micro-categories, their specific tags, and a
brief description of each tag.

B. Full results
Here, we report the full results for Llama-3.1-8B-Instruct
and Llama-3.3-70B-Instruct. The results for the random
ICL sampling setting are reported in Table 9 for the fine-
grained tags and in Table 10 for the coarse-grained cate-
gories. The results for the fine-grained categories in the
context prompt setting are reported in Table 11.

C. Computational resources
For each prompt type, training Llama-3.1-8B-Instruct took
∼20 minutes on a single NVIDIA H100 (96GB of VRAM),
for a total of about 17 hours over all the 50 combinations
of seeds and hyperparameters. Training Llama-3.3-70B-
Instruct for each of its five runs per setting took around
90 minutes, for an additional 15 hours for the two prompt
types.



Table 9
Micro-averaged F1 results per tag for Llama-3.1-8B-Instruct and Llama-3.3-70B-Instruct in the fine-grained setting, using varying
amounts of randomly-sampled pairs of ICL examples. Missing rows indicate that the model did not make any predictions.

Llama-3.1-8B-Instruct 70B
Tags 0 2 4 6 8 10 6

CSINTER × 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.067 ±0.149 0.333 ±0.471 0.200 ±0.447 0.267 ±0.365

✓ 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.100 ±0.224 0.000 ±0.000

CSINTRA × 0.000 ±0.000 0.000 ±0.000 0.067 ±0.149 0.164 ±0.157 0.044 ±0.099 0.050 ±0.112 0.174 ±0.173

✓ 0.000 ±0.000 0.067 ±0.149 0.000 ±0.000 0.057 ±0.128 0.000 ±0.000 0.089 ±0.199

DMCA × 0.000 ±0.000 0.000 ±0.000 0.080 ±0.179 0.133 ±0.298 0.067 ±0.149 0.280 ±0.259 0.271 ±0.269

✓ 0.000 ±0.000 0.160 ±0.358 0.180 ±0.249 0.000 ±0.000 0.333 ±0.333 0.067 ±0.149

DMCC × 0.809 ±0.033 0.800 ±0.047 0.812 ±0.077 0.811 ±0.024 0.817 ±0.027 0.795 ±0.076 0.838 ±0.039

✓ 0.788 ±0.059 0.827 ±0.056 0.815 ±0.039 0.811 ±0.055 0.812 ±0.062 0.803 ±0.047

FS × 0.412 ±0.145 0.511 ±0.083 0.482 ±0.083 0.511 ±0.118 0.500 ±0.082 0.455 ±0.123

✓ 0.396 ±0.065 0.453 ±0.120 0.438 ±0.077 0.442 ±0.089 0.503 ±0.045 0.477 ±0.093

GA × 0.068 ±0.097 0.269 ±0.053 0.252 ±0.123 0.281 ±0.098 0.223 ±0.135 0.306 ±0.124

✓ 0.104 ±0.076 0.225 ±0.191 0.196 ±0.145 0.189 ±0.136 0.315 ±0.218 0.224 ±0.088

GADVO × 0.080 ±0.179

GDI × 0.200 ±0.447

GNC × 0.100 ±0.224

✓ 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.080 ±0.179 0.050 ±0.112

GNN × 0.101 ±0.096 0.101 ±0.095 0.156 ±0.104 0.191 ±0.093 0.187 ±0.171 0.176 ±0.050 0.193 ±0.131

✓ 0.117 ±0.078 0.088 ±0.050 0.092 ±0.095 0.102 ±0.060 0.144 ±0.047 0.124 ±0.130

GPI × 0.000 ±0.000 0.080 ±0.179 0.100 ±0.224 0.000 ±0.000 0.100 ±0.224 0.133 ±0.298 0.133 ±0.298

✓ 0.080 ±0.179 0.133 ±0.298 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.100 ±0.224

GPP × 0.059 ±0.054 0.230 ±0.119 0.102 ±0.144 0.264 ±0.190 0.165 ±0.027 0.199 ±0.072 0.359 ±0.207

✓ 0.138 ±0.149 0.240 ±0.084 0.104 ±0.091 0.147 ±0.109 0.187 ±0.060 0.159 ±0.101

GPR × 0.000 ±0.000 0.147 ±0.202 0.130 ±0.186 0.213 ±0.307 0.124 ±0.170 0.117 ±0.162 0.227 ±0.352

✓ 0.000 ±0.000 0.180 ±0.249 0.050 ±0.112 0.124 ±0.170 0.137 ±0.192 0.089 ±0.122

GVAUX × 0.115 ±0.115 0.151 ±0.099 0.219 ±0.133 0.240 ±0.121 0.306 ±0.121 0.379 ±0.123 0.359 ±0.279

✓ 0.000 ±0.000 0.153 ±0.143 0.226 ±0.222 0.109 ±0.114 0.225 ±0.165 0.245 ±0.080

GVM × 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.080 ±0.179 0.067 ±0.149 0.000 ±0.000

✓ 0.100 ±0.224 0.000 ±0.000 0.100 ±0.224 0.100 ±0.224 0.000 ±0.000 0.000 ±0.000

GVN × 0.033 ±0.075 0.219 ±0.312 0.167 ±0.236 0.228 ±0.221 0.212 ±0.329 0.083 ±0.118 0.160 ±0.358

✓ 0.031 ±0.069 0.000 ±0.000 0.176 ±0.258 0.200 ±0.278 0.142 ±0.195 0.036 ±0.081

GVNF × 0.000 ±0.000 0.080 ±0.179 0.180 ±0.249 0.227 ±0.352 0.260 ±0.241 0.260 ±0.241 0.160 ±0.358

✓ 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.147 ±0.202 0.000 ±0.000

GVT × 0.062 ±0.061 0.142 ±0.156 0.120 ±0.113 0.155 ±0.046 0.174 ±0.096 0.117 ±0.083 0.161 ±0.162

✓ 0.081 ±0.102 0.131 ±0.143 0.050 ±0.112 0.056 ±0.082 0.108 ±0.066 0.150 ±0.112

GWC × 0.000 ±0.000 0.000 ±0.000 0.067 ±0.149 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

LP ✓ 0.000 ±0.000 0.050 ±0.112 0.000 ±0.000 0.044 ±0.099 0.040 ±0.089 0.000 ±0.000

LSADJ × 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.200 ±0.447 0.000 ±0.000

✓ 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.050 ±0.112 0.000 ±0.000

LSADV × 0.000 ±0.000 0.080 ±0.179 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.067 ±0.149

LSN × 0.000 ±0.000 0.067 ±0.149 0.044 ±0.099 0.137 ±0.192 0.000 ±0.000 0.050 ±0.112

✓ 0.000 ±0.000 0.100 ±0.224 0.000 ±0.000 0.040 ±0.089 0.044 ±0.099 0.134 ±0.128

LSPR × 0.193 ±0.124 0.186 ±0.077 0.274 ±0.118 0.286 ±0.036 0.214 ±0.067 0.268 ±0.155

✓ 0.000 ±0.000 0.323 ±0.111 0.216 ±0.094 0.197 ±0.129 0.165 ±0.105 0.201 ±0.084

LSV × 0.000 ±0.000 0.106 ±0.148 0.180 ±0.249 0.146 ±0.182 0.170 ±0.122 0.153 ±0.166 0.029 ±0.064

✓ 0.000 ±0.000 0.050 ±0.112 0.000 ±0.000 0.062 ±0.138 0.145 ±0.149 0.088 ±0.136

LWCO × 0.000 ±0.000 0.000 ±0.000 0.036 ±0.081 0.024 ±0.053 0.031 ±0.069 0.082 ±0.126 0.073 ±0.163

✓ 0.000 ±0.000 0.000 ±0.000 0.123 ±0.116 0.000 ±0.000 0.036 ±0.081 0.000 ±0.000

QC × 0.000 ±0.000 0.200 ±0.447 0.200 ±0.447 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

QM × 0.277 ±0.171 0.196 ±0.162 0.235 ±0.156 0.288 ±0.091 0.232 ±0.097 0.163 ±0.107 0.237 ±0.160

✓ 0.067 ±0.092 0.224 ±0.062 0.216 ±0.152 0.364 ±0.190 0.373 ±0.107 0.224 ±0.152

WM × 0.067 ±0.149 0.183 ±0.171 0.374 ±0.172 0.133 ±0.183 0.359 ±0.330 0.564 ±0.178 0.288 ±0.287

✓ 0.100 ±0.224 0.141 ±0.199 0.337 ±0.208 0.258 ±0.280 0.436 ±0.185 0.200 ±0.189

WO × 0.000 ±0.000 0.036 ±0.081 0.000 ±0.000 0.086 ±0.081 0.031 ±0.069 0.000 ±0.000 0.040 ±0.089

✓ 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.057 ±0.128 0.031 ±0.069 0.000 ±0.000

WR × 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.040 ±0.089 0.044 ±0.099 0.025 ±0.056

✓ 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.057 ±0.078 0.000 ±0.000

XADJPR × 0.000 ±0.000 0.000 ±0.000 0.200 ±0.447 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

XNUC × 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.100 ±0.224 0.200 ±0.447

XVCO × 0.000 ±0.000 0.067 ±0.149 0.050 ±0.112 0.073 ±0.104 0.036 ±0.081 0.057 ±0.128 0.044 ±0.099

✓ 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.031 ±0.069 0.040 ±0.089 0.040 ±0.089



Table 10
Micro-averaged F1 results per category for Llama-3.1-8B-Instruct in the coarse-grained setting, using varying amounts of
randomly-sampled pairs of ICL examples.

Llama-3.1-8B-Instruct 70B
Tags 0 2 4 6 8 10 6

Code-switching × 0.000 ±0.000 0.000 ±0.000 0.050 ±0.112 0.050 ±0.112 0.073 ±0.163 0.233 ±0.325

✓ 0.000 ±0.000 0.040 ±0.089 0.089 ±0.122 0.197 ±0.192 0.194 ±0.211 0.292 ±0.443 0.175 ±0.186

DMC × 0.833 ±0.032 0.807 ±0.058 0.813 ±0.059 0.814 ±0.064 0.810 ±0.064 0.800 ±0.052

✓ 0.784 ±0.058 0.826 ±0.056 0.826 ±0.052 0.827 ±0.051 0.818 ±0.064 0.832 ±0.088 0.854 ±0.036

Form × 0.380 ±0.140 0.447 ±0.123 0.534 ±0.047 0.529 ±0.117 0.470 ±0.125 0.496 ±0.100

✓ 0.405 ±0.130 0.477 ±0.049 0.413 ±0.147 0.497 ±0.123 0.488 ±0.118 0.453 ±0.118 0.551 ±0.090

Grammar × 0.203 ±0.047 0.241 ±0.029 0.247 ±0.039 0.268 ±0.058 0.267 ±0.014 0.302 ±0.048

✓ 0.228 ±0.039 0.251 ±0.035 0.261 ±0.026 0.306 ±0.025 0.284 ±0.066 0.282 ±0.045 0.333 ±0.041

Infelicities × 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

✓ 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

Lexico-grammar × 0.029 ±0.064 0.057 ±0.128 0.068 ±0.064 0.059 ±0.086 0.061 ±0.093 0.059 ±0.084

✓ 0.031 ±0.069 0.044 ±0.099 0.055 ±0.079 0.064 ±0.095 0.092 ±0.061 0.044 ±0.063 0.117 ±0.149

Lexis × 0.086 ±0.067 0.173 ±0.032 0.157 ±0.054 0.159 ±0.071 0.136 ±0.019 0.143 ±0.051

✓ 0.091 ±0.050 0.140 ±0.058 0.167 ±0.044 0.168 ±0.076 0.182 ±0.028 0.176 ±0.045 0.201 ±0.051

Punct. × 0.183 ±0.202 0.155 ±0.168 0.194 ±0.129 0.136 ±0.137 0.089 ±0.085 0.152 ±0.103

✓ 0.097 ±0.096 0.178 ±0.160 0.181 ±0.149 0.222 ±0.102 0.191 ±0.150 0.156 ±0.209 0.262 ±0.102

Word × 0.040 ±0.089 0.092 ±0.064 0.081 ±0.063 0.109 ±0.078 0.144 ±0.133 0.051 ±0.071

✓ 0.000 ±0.000 0.118 ±0.080 0.122 ±0.109 0.066 ±0.067 0.144 ±0.134 0.116 ±0.117 0.117 ±0.129

Table 11
Results per tag for Llama-3.1-8B-Instruct and Llama-3.3-70B-Instruct in terms of micro-averaged F1-measure for the context
prompt setting, using fine-grained tags. Missing tags indicate the model did not make any predictions for that class. Only
non-zero results are shown.

8B Tags 70B Tags
CSINTRA 0.086 ±0.121 ×
DMCC 0.594 ±0.120 × 0.722 ±0.098 ×

0.515 ±0.186 ✓

FS 0.217 ±0.030 × 0.485 ±0.187 ×
0.224 ±0.123 ✓

GA 0.109 ±0.073 ×
0.031 ±0.069 ✓

GNN 0.052 ±0.072 × 0.098 ±0.173 ×
0.138 ±0.148 ✓

GPP 0.029 ±0.042 × 0.070 ±0.102 ×
0.036 ±0.052 ✓

GVNF 0.040 ±0.089 ×
GVT 0.061 ±0.086 ×
LWCO 0.033 ±0.075 × 0.033 ±0.075 ×
LSN 0.033 ±0.075 ×
LSPR 0.107 ±0.106 ×
QM 0.117 ±0.168 ×

0.067 ±0.149 ✓

WM 0.024 ±0.053 ×
XVCO 0.144 ±0.221 ×
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