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Abstract

The objective of this work is to assess the performance of Large Language Models (LLMs) on the task of Word Sense

Disambiguation (WSD) for Latin.We evaluate state-of-the-art LLMs—including GPT-4o-mini and LLaMA variants—in both

zero-shot and fine-tuned settings, using a dataset derived from the SemEval-2020 Latin Lexical Semantic Change task. Our

study aims to determine whether instruction tuning and task-specific fine-tuning can significantly improve the models’ ability

to disambiguate Latin word senses. Results show that while LLMs demonstrate a non-trivial baseline ability in zero-shot

settings, fine-tuning – particularly instruction-based – provides improvements in accuracy and F1 scores. These findings

highlight the potential of LLMs when applied to low-resourced historical languages.
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1. Introduction and Motivations

In terms of data availability and the impact of the study,

some languages are more represented than others. Nat-

urally, when developing a new Language Model or col-

lecting data for a benchmark, most computational and

research efforts focus on English. However, English is

just one out of thousands of spoken languages, and many

research teams continue working to fill this representa-

tion gap.

Latin is a suitable example of a former low-resource

language to which many efforts were dedicated for creat-

ing ad hoc resources and datasets. Moreover, Latin is a

perfect fit for several Natural Language Processing tasks

thanks to a number of factors: (i) accessible digital data

covering two thousand years of history, e.g., LiLa [1, 2, 3],

LatinISE [4, 5, 6], Latin WordNet [7], (ii) available compu-

tational resources specially designed for Latin, e.g., Clas-

sical Language Toolkit [8], UDPipe [9, 10], (iii) ancient

languages offer the opportunity to analyse long-term lex-

ical semantic change and Latin itself is a prime example

of a language that is not only ancient, but has also contin-

ued to be actively used long after the end of antiquity: the

usage of Latin in written works covers a period of over

22 centuries, spanning from 200 BCE to modern-days.

This temporal extension results in a wealth of textual
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data [11, 12] in which the language has undergone vari-

ous diachronic evolution. Regardless of the few projects

focusing on Latin, especially for semantic and syntactic

annotations, very few evaluation campaigns and chal-

lenges are proposed, i.e., SemEval-2020 [13], EvaLatin

[14, 15, 16], and when it comes to language modelling

even fewer studies on Latin have been conducted, i.e.,

Latin BERT
1

[17, 18]. Nevertheless, the path to achieving

equal representation of Latin is still far-reaching, espe-

cially when it comes to annotated datasets for automated

learning, as well as language-specific generative models.

One of the historical [19] Natural Language Process-

ing (NLP) tasks that suffers the most from the lack of

resources is Word Sense Disambiguation (WSD), defined

in [20] as “the computational identification of meaning for
words in context”. Having access to a language-specific

model and extensive corpora is vital for the Word Sense

Disambiguation task. As a matter of fact, [21] define the

so-called knowledge acquisition bottleneck that character-

izes WSD: it heavily relies on machine-readable knowl-

edge resources that not only require extensive manual

effort for their creation, but they also need to be updated

or created from scratch anytime a variation occurs, e.g.,

a word has gained or lost a sense.

Over the years, techniques for tackling WSD have

evolved significantly in tandem with advancements in

Artificial Intelligence (AI) and Machine Learning (ML).

Initially, the field was dominated by rule-based systems,

which eventually transitioned to knowledge-based ap-

proaches as digital sense inventories became more acces-

sible. The advent of digital corpora paved the way for

supervised learning methodologies, utilising manually

annotated datasets to improve WSD effectiveness.

The proliferation of web content has further revolu-

1
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tionised the landscape by providing vast corpora and ex-

tensive knowledge graphs extracted from online sources,

thereby amplifying the capabilities of both supervised

and knowledge-based methods. The introduction of

transformer-based architectures [22] marked a signifi-

cant turning point. These models use dense vector rep-

resentations to capture semantic meaning in context, re-

sulting in further advancements in disambiguation tech-

niques. A significant development in this domain is the

rise of Large Language Models (LLMs), which are built

upon the Transformer architecture and trained on exten-

sive text corpora. LLMs exhibit proficiency in a myriad

of tasks in zero-shot or few-shot contexts, ruling out

the necessity of task-specific training data. This implies

an inherent capacity for semantic understanding within

these models. Nonetheless, LLMs can also be fine-tuned

on particular tasks by utilising tailored training data, en-

hancing their performance in specific applications.

Considering these premises, the intent of this work is

to assess how state-of-the-art LLMs perform on under-

represented languages like Latin through the lens of a

long-standing task in NLP like WSD. In particular, our in-

vestigation has two objectives. First, we want to test mod-

els out-of-the-box ability to disambiguate Latin senses in

a zero-shot setting. In this way, we aim to first establish

how well the models inherent multilingual knowledge

performs in accurate sense prediction. Next, we also per-

form task-specific fine-tuning, which enables us to adapt

both standard and instruction versions of LLMs. The aim

is to gauge the gain obtained with this additional training

step.

The paper is structured as follows: Section 2 provides

an overview of works related to solving the WSD task

with LLMs; Section 3 introduces the corpus of choice

for this study, while 4 illustrates the methodology. Sec-

tion 5 describes the experimental setting and discusses

the results and the limitations of the proposed strategy,

while Section 6 summarises the takeaway messages of

this paper and suggests some future works.

2. Related Work

2.1. Latin Word Sense Disambiguation

Currently, solving the WSD task for Latin using language

models remains an unexplored strategy, with very few

works investigating this line of research in recent years.

The idea of using WSD for measuring the ability of lan-

guage models to deal with Latin is supported by the work

proposed by [17] in which Latin BERT is tested on the

sense disambiguation task.

Latin BERT is a contextual language model tailored

for Latin, trained on a corpus of 642.7 million words

drawn from diverse sources ranging from the Classical

period to the 21st century. It achieves state-of-the-art

performance in Latin part-of-speech tagging across all

Universal Dependency datasets. To capture the full range

of linguistic variation, the model was trained on multiple

corpora, including the Corpus Thomisticum, the Internet

Archive, the Latin Library, Patrologia Latina, Perseus, and

the Latin Wikipedia. Latin BERT uses Latin-specific sen-

tence and word tokenizers from the Classical Language

Toolkit, resulting in a vocabulary of 32,895 subword units.

To assess Latin BERT performance in the WSD task, the

authors reformulated it into a binary classification task

and created an ad hoc dataset of Latin sense examples

extracted from the Lewis and Short Latin Dictionary [23].

In order to be selected, headwords must have at least

two distinct senses – typographically denoted by “I.” and

“II.” – supported by at least 10 sentences each, and longer

than five words. For the task, only the two major senses

of a headword were retained; the final dataset consists of

8,354 examples for 201 dictionary headwords. For each

headword, an instance of Latin BERT was fine-tuned on

80% of the examples. The number of training instances

per headword ranges from 16 (8 per sense) to 192 (96 per

sense); 59% of headwords have 24 or fewer training ex-

amples. Latin BERT achieves 75.4% accuracy, compared

to the 67.3% of a bidirectional LSTM with static word

embeddings. These results show that, even with few

training examples, Latin BERT was able to disambiguate

senses.

A few years later, [24] fine-tuned Latin BERT on a

portion of sense representations in the Thesaurus Lin-
guae Latinae2

(TLL). The TLL is the first comprehensive

dictionary of ancient Latin usage up to 600 AD, offering

a comprehensive, documented overview of every Latin

word’s history, including meanings and constructions,

etymology, inflexion peculiarities, spelling, and prosody,

as well as comments from ancient sources on the word it-

self. The ongoing TLL project begun in 1894 and has been

regularly updated since; currently, it contains lemmata

from a to resurgēsco, and it is estimated to contain ap-

proximately 56,000 entries. Inspired by the WSD dataset

created by Bamman and Burns for Latin BERT, the au-

thors requested data for the same lemmata from TLL,

obtaining 25,227 quotes for 40 lemmata. The new dataset

leads to a performance gain, with the Mean Macro F1

increasing from .695 to .794.

Although both [17] and [24] achieved promising re-

sults, Latin is still an under-represented language for

which very few annotated resources are available, when

compared to English. [25] proposes a language pivoting

framework for Latin. Language pivoting, borrowed from

Machine Translation [26], consists of propagating anno-

tations from high-resource languages to lower-resource

ones. Starting from the 40 lemmata manually annotated

2
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for SemEval-2020 [13], the authors extract an aligned

Latin-English dataset in which these lemmata occur. To

this day, the dataset of SemEval-2020 Task 1 is the only

benchmark for Latin, manually annotated by Latin ex-

perts. These lemmata were then mapped to WordNet,

Latin WordNet
3

and Princeton WordNet [27], allowing

for annotation propagation from English to Latin. The

final result is a dataset of 3,886 annotated sentences for

training and experimentation.

2.2. LLMs and Word Sense

Disambiguation

Over the years, LLMs have consistently demonstrated

their ability to perform various tasks in a zero- or few-

shot setting with minimal or no specific training data,

suggesting an intrinsic capability of LLMs to grasp the

semantics behind language [28, 29].

[30] demonstrates that BERT-like models are capable of

effectively differentiating between various word senses,

even when only a few examples are available for each.

Their analysis further reveals that although language

models can perform nearly perfectly on coarse-grained

noun disambiguation in ideal settings where training

data and resources are abundant, such conditions are

rare in practical scenarios, presenting ongoing challenges.

Along the lines of BERT-like approaches, [31] examines

multiple WSD methods, including those that use lan-

guage models to extract contextual embeddings as in-

put features and as a foundation for training supervised

models on sense-annotated data. [32] assesses language

models’ WSD capabilities through three behavioural ex-

periments designed to evaluate children’s ability to dis-

ambiguate word senses. The study offers a compelling

comparison between how children understand semantics

and how it is encoded in transformer-based models. The

authors identify a bias in the models toward the most fre-

quent sense and observe a negative correlation between

the size of the training data and model performance.

[33] evaluated WSD accuracy of LLMs on eight

datasets via a multiple-choice question format, and [34]

extended the analysis by gauging LLM performance on

single-choice questions and examining how different

model sizes affect disambiguation accuracy. Similarly,

[35] creates a benchmark specific for the Italian language

with the aim of evaluating LLMs’ abilities in selecting

the correct meaning of a word and in generating the

definition of a word in a sentence. Finally, [36] analy-

ses WSD capabilities of only open LLMs experimenting

with different parameter configurations on several lan-

guages: English, Spanish, French, Italian and German.

The authors extend the existing XL-WSD benchmark [37]

to include two additional subtasks: (i) given a word oc-

3
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currence within a sentence, the LLM must generate the

appropriate definition; and (ii) given a word occurrence

and a list of predefined meanings, the LLM must identify

the correct one. Moreover, they use the training data of

XL-WSD to fine-tune an open LLM based on LLaMA3.1-

8B. The results indicate that while LLMs perform well

in zero-shot settings, they still fall short of surpassing

current state-of-the-art methods. Larger models achieve

the strongest results, whereas medium-sized models tend

to underperform. Notably, however, a fine-tuned model

with a medium parameter size outperforms all others,

including existing state-of-the-art approaches.

3. Dataset

3.1. Resource

The dataset of choice is the Latin annotated dataset for

the Unsupervised Lexical Semantic Change Detection

(LSCD) shared task of SemEval-2020 [13].

This dataset is a fragment of LatinISE
4

[5], a 13 million

words diachronic, annotated Latin corpus. The primary

source of LatinISE is the Latin portion of the IntraText

digital library
5

. To semi-automatically annotate this cor-

pus, 2013 state-of-the-art NLP tools – PROIEL
6

, Quick

Latin
7

, and TreeTagger
8

– were used. Hence, LatinISE

provides morphological annotations like part-of-speech

tags and lemma for each word.

Back in 2020, for the SemEval-2020 Unsupervised Lexi-

cal Semantic Change task, two time-specific sub-corpora

𝐶1 and 𝐶2 were extracted from LatinISE [13, 6]: 𝐶1 cov-

ers the period from 2𝑛𝑑
century BC to 0 (1.7M tokens),

𝐶2 from 0 to 21𝑠𝑡 century AD (9.4M tokens).

As concerns target words, they are either (i) words

that changed their meaning(s) between 𝐶1 and 𝐶2; or (ii)
stable words that did not change their meaning during

that time. The choice of the set of lexemes for the anno-

tation was based on an initial process of lexical selection

and pre-annotation, carried out by a team member [6]. A

list of target words comprising those whose meaning has

been attested to have changed between the pre-Christian

and Christian era [38, 39, 40, 23] was selected. The pre-

annotation trial verified whether the corpus showed evi-

dence of both the late antiquity senses and the previous

senses, and whether the late antiquity senses appeared in

the later texts only and the classical senses in the earlier

texts, although they may also have occurred in later texts.

Conversely, stable words were chosen since they are not

known for having undergone lexical semantic change

4
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associated with the period of late antiquity. The final list

comprises 40 target words, of which 23 are stable, while

17 have undergone changes in meaning in relation to

Christianity.

For each target word, its primary sense definitions

were taken from the Latin portion of the Logeion On-
line Dictionary9

, which includes Lewis and Short’s Latin
English Lexicon [23], Lewis’s Elementary Latin Dictio-
nary [41], and Du Fresne Du Cagne’s Glossarium mediae
et infimae latinitatis [42]. Depending on the cases, the

sense inventory was simplified, or the definitions were

shortened, while maintaining the principal distinction

between senses. Finally, for each target word 60 passages

sample sentences were extracted, 30 from 𝐶1 and 30 𝐶2

respectively, for a total of 2,398 passages.

The lack of native Latin speakers adds a further layer

of complexity to the sense annotation process. 10 an-

notators with a high-level knowledge of Latin were re-

cruited, ranging from undergraduate students to senior

researchers. Annotators – only one per target word –

scored the relatedness between a usage and a sense def-

inition according to the Diachronic Usage Relatedness

(DUReL) framework [43], specially designed for lexical

semantic change annotations. The DUReL framework

consists of a 4-point scale for quantifying the relatedness

of a word usage and a sense, or score 0 if the annotator

cannot decide:

• 0 - Cannot decide

• 1 - Unrelated

• 2 - Distantly related

• 3 - Closely related

• 4 - Identical

Table 1 shows an example of the usage annotation

for target word beatus. The senses presented to the an-

notators were: (a) “blessed”, (b) “rich”, (c) “fortunate”,

(d) “happy” and (e) “rewarded”. Let’s focus on the sense

“blessed”, which only emerged later with the advent of

Christianity. Notice how it scores 1 for the first usage,

dated 46 BC, while it scores 4 for the second usage, dated

circa 1100 AD.

Target word virtus was chosen for calculating the inter-

annotator agreement between four annotators: the av-

erage pairwise agreement computed as Spearman cor-

relation coefficient was 0.69, comparable with inter-

annotator agreement for modern languages, e.g., English

0.69, Swedish 0.57 and German 0.59 [43]. See [6] for

the detailed process behind the creation and annotation

of the dataset.

3.2. Data preparation

Pairs of sense and sentence were split in a stratified man-

ner, based on the scores assigned to each sense. This

9
https://logeion.uchicago.edu/

stratification process, 70% training and 30% testing, out-

puts a training set of 6,299 sentences and a testing set of

2,690. Due to the absence of annotations, sentences of the

lemma oportet were excluded from the dataset. DuREL

annotation statistics are summarised in Table 2 below.

We take full advantage of the annotations in the dataset

by creating a separate prompt for each of the judgments

assigned to each of the proposed senses for a single sen-

tence. For example, if the annotator marked virtute as “4

- Identical” for the “manliness, courage, virtue, strength”

and “1 - Unrelated” for the sense “virtue, personified as a
deity”, two separate prompts are created, each structured

as shown in Listings 1 and 2.

Listing 1: Prompt generated by each sense annotation for

regression task.

Instruction: Given the target word ‘‘virtute’’
and the sentence in input where the word
is enclosed by the [TARGET] tag, and the
following meaning ‘‘virtue, personified as
a deity’’, assign a score between 0 and
4. The score meaning is the following:

0: Cannot decide
1: Unrelated
2: Distantly Related
3: Closely Related
4: Identical
Answer just with the score.

Input: <left context> [TARGET] virtue [TARGET]
<right context>

This process yields a total of 8,989 prompts for the

regression task.

As for the binary classification task, the DuREL 1-to-4

scale was binary encoded as follows:

• Pairs of sense and sentence scores equal to or

above 3 were labelled as yes;

• Pairs of sense and sentence scores equal to or

below 2 were labelled as no.

The prompt is the following:

Listing 2: Prompt generated by each sense annotation for

binary classification task.

Instruction: Given the target word ‘‘virtute’’
and the sentence in input where the word
is enclosed by the [TARGET] tag, and the
following meaning ‘‘virtue, personified as
a deity’’, assign a label "yes" or "no".

The label meaning is the following:
"yes": The sense for the target word occurrence

is correct
"no": The sense for the target word occurrence

is not correct
Answer just with the label.

Input: <left context> [TARGET] virtue [TARGET]
<right context>

https://logeion.uchicago.edu/


Table 1

Two annotated usages of lemma beatus [6]; the first one is extracted from a classical text, Cicero’s “Tusculanae disputationes”
(46 BC), the second one from a mediaeval text, “De libero arbitrio” by Robertus Grossetest, 12𝑡ℎ - 13𝑡ℎ century AD. The English

translations are in Appendix A.

Text Senses

“blessed” “rich” “fortunate” “happy” “rewarded”

[...] Dico enim constanter grauiter

sapienter fortiter. Haec etiam

in eculeum coiciuntur, quo uita non

adspirat beata. - Quid igitur? solane

beata 1 1 3 3 2

uita, quaeso, relinquitur extra ostium

limenque carceris, cum constantia grauitas

fortitudo sapientia reliquaeque uirtutes

rapiantur ad tortorem nullumque

recusent nec supplicium nec dolorem? [...]

[...] Ex quo fit, ut de nihilo creauerit

omnia.” Eadem itaque ratione solus facit ominia,

nulla adiutus natura. Horum autem obiectorum

solutio haberi potest ut uidetur ex uerbis

beati 4 1 3 3 2

Bernardi sic dicentis: “Ipsa gratia Liberum

arbitrium excitat, cum seminat cogitatum.

Sanat, cum mutat affectum; roborat, ut

perducat ad actum; seruat, ne sentiat

defectum.” [...]

Table 2

DuREL annotation statistics in training and testing sets.

Label Training Testing Total

0 44 15 59

1 3,536 1,514 5,050

2 495 205 700

3 771 329 1,100

4 1,453 627 2,080

6,299 2,690 8,989

Pairs of sense and sentence with score 0 were not

considered in this experiment; thus, with respect to the

scores distribution in Table 2, the training set for binary

classification task consists of 6,255 instances instead of

6,299, and the testing set has 2,675 examples instead of

2,690, yielding a total of and 8,930 prompts. This binary

encoded dataset comprises 956 instances of class yes and

1,719 no, resulting in a very imbalanced dataset in which

class yes represents only 35.73% of the entire dataset.

The idea behind this work is to leverage this dataset

for building a benchmark for the evaluation of LLMs in

disambiguating Latin words as described in the following

section.

4. Methodology

As stated in the introduction, one of the aims of this paper

is to assess whether fine-tuning on LLMs can improve

their performance on a lower-represented language, com-

pared to a zero-shot setting. To do so, we exploit the

prompt dataset created from LatinISE, described in Sec-

tion 3. Tables 3 and 4 introduce the LLMs of choice and

summarise their characteristics.

Table 3

Strategies applied to GPT-4o-mini and LLaMA-3 variants.

Zero-shot Fine-tuning

GPT-4o-mini ✓

LLaMA-3.3-70B-instruct-turbo ✓

LLaMA-3.1-8B-instruct ✓
LLaMA-3.1-8B-instruct-ft ✓

4.1. Zero-shot

We assess the zero-shot capabilities of two categories of

instruction-tuned LLMs:

• LLaMA-3 instruction-tuned. We use publicly

available checkpoints of Meta’s LLaMA 3.3-70B



Table 4

Technical details of analysed LLMs.

Parameters

Training

tokens
Multilinguality

GPT-4o-mini – – ✓

LLaMA-3.1 8B ∼15 trillion ✓
LLaMA-3.3 70B ∼15 trillion ✓

and 3.1-8B variants with instruction tuning, ac-

cessed via the TogetherAI API
10

and Unsloth

API
11

, respectively;

• GPT-4o-mini. accessed via Microsoft Azure API,

this model is used without any task-specific train-

ing. Prompting is designed to simulate realistic

WSD instructions.

For zero-shot WSD, we directly use the prompt test

set, unseen during fine-tuning (see Section 4.2). After a

preliminary prompt engineering step, we use the prompt

in Listing 3, which is the same as the one used for fine-

tuning.

4.2. Fine-tuning

Using the training split of the dataset, we fine-tune the

open-weight LLaMA-3.1-8B model. Given the compu-

tational constraints associated with full fine-tuning of

large models, we adopt a parameter-efficient fine-tuning

(PEFT) approach based on Low-Rank Adaptation (LoRA).

LoRA [44] introduces trainable, low-rank matrices into

each transformer layer to adapt the model to a down-

stream task. Instead of updating all model parameters,

LoRA freezes the pre-trained weights and injects a low-

rank decomposition into the linear projections of the

self-attention and/or feed-forward layers. This strategy

significantly reduces the number of trainable parameters

and memory usage, allowing efficient fine-tuning even

on consumer-grade GPUs. We use the implementation

provided by the Unsloth library, which enables us to re-

duce the required memory and accelerate the training

process. During the training, we format the instruction

data using the prompt reported in Listing 3 by relying

on the chat template specific to the LLaMA models.

Listing 3: Prompt used for the fine-tuning.

System: <Instruction>

User: <Input>

Assistant: <Output>

10
https://www.together.ai/

11
https://unsloth.ai/

During training, we use the following parameters:

𝑟𝑎𝑛𝑘 = 32, 𝑎𝑙𝑝ℎ𝑎 = 64, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 2𝑒− 4 and

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 32. We train all models for five epochs on

the whole training dataset. The training was performed

using a single GPU NVIDIA RTX A6000 with 48GB of

memory.

5. Evaluation

As mentioned in Section 1, our study has two objectives.

First, we want to test the models ability to disambiguate

Latin senses in a zero-shot setting. In this way, we aim to

first establish how well the model inherent multilingual

knowledge performs in accurate sense prediction. Next,

we perform task-specific fine-tuning, which enables us

to adapt both standard and instruction versions of LLMs.

The objective is to quantify the gain obtained through

this additional training step.

It is worth noticing that the dataset of choice was

initially devised for the Unsupervised LSCD task [13],

not for WSD; therefore, comparing the results of the

shared task with the results of this work is not feasible.

GPT-4o-mini and LLaMA-3.3-70B-instruct-turbo

act as a zero-shot baseline for this experiment, to assess

the capabilities of models not specially devised or fine-

tuned for the Latin WSD task.

It is crucial to note that the dataset is highly imbal-

anced, as many instances are annotated with 1, since each

word occurrence is generally assigned a single meaning;

consequently, all other meanings receive the lowest score.

Notice that all the metrics are computed with the dataset

imbalance in mind. Balanced Accuracy
12

is defined as

the average recall obtained inch class. Weighted Preci-

sion
13

, Recall
14

and F1
15

calculate metrics for each la-

bel, and find their average weighted by support. Finally,

Macro F1 and Micro F1 scores are variants of F1. The

former is the only metric that does not take into account

label imbalance, but computes metrics for each label and

finds their unweighted mean; the latter calculates met-

rics globally by counting the total true positives, false

negatives and false positives. Details about the DuREL

annotation statistics are reported in Table 2.

We release the following resources, available on

GitHub
16

: i) the source code; ii) instruction fine-tuning

and testing data; iii) links to the fine-tuned models on

HuggingFace and the outputs of all evaluated models.

12
https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.balanced_accuracy_score.html

13
https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.precision_score.html

14
https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.recall_score.html

15
https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.f1_score.html

16
https://github.com/swapUniba/latin-wsd

https://www.together.ai/
https://unsloth.ai/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://github.com/swapUniba/latin-wsd


Table 5

Comparison of model performance on regression task across various evaluation metrics (MSE, RMSE, Precision, Recall,

Accuracy, F1, Macro F1, Micro F1) for GPT-4o-mini and different LLaMA variants.

MSE RMSE Precision Recall Accuracy F1 Macro F1 Micro F1

GPT-4o-mini 1.0743 2.4595 .6371 .4190 .3095 .4170 .2504 .4190

LLaMA-3.3-70B-instruct-turbo 1.4063 3.1550 .6056 .2743 .2372 .2543 .1742 .2743

LLaMA-3.1-8B-instruct 1.6491 3.7405 .4748 .1717 .1993 .1037 .1037 .1717

LLaMA-3.1-8B-instruct-ft 0.7699 1.8093 .6854 .7071 .4354 .6940 .4456 .7071

5.1. Regression task

Table 5 illustrates the results of the WSD task. Mean

Squared Error (MSE) and Root Mean Squared Error

(RMSE) show that the fine-tuned model is better at pre-

dicting the annotation score. To give a complete overview

of the results, we also provide classification metrics. Al-

though GPT-4o-mini shows a higher precision, LLaMA-

3.1-8B-instruct-ft outperforms every other model. It

is interesting to note the high difference in performance

between LLaMA-3.3-70B-instruct-turbo and LLaMA-

3.1-8B-instruct-ft. These results prove that the fine-

tuning of a medium-sized LLM using a single GPU can

overcome a model of the same family with about nine

times the number of parameters.

To better understand the behaviour of each model,

we report the confusion matrix of each model in B. The

matrices of GPT-4o-mini (Figure 1) and LLaMA-3.3-70B

(Figure 2) show that the models often confuse the label 1

with other labels. It is interesting to note that GPT-4o-

mini confuses the label 1 with the label 4 508 times. This

behaviour is more evident in LLaMA-3.1-8B-instruct

(Figure 3) where 913 instances labelled as 1 are confused

with label 3 and 579 with labels 4.

The fine-tuned model LLaMA-3.1-8B-instruct-ft

(Figure 4) is the best at recognising label 1. This be-

haviour is evident since the model tends to overfit on the

more frequent class.

5.2. Binary Classification task

Results of the WSD task framed as a binary classifica-

tion task are in Table 6, as well as the confusion matrix

of each model in Appendix B. Our proposed fine-tuned

model LLaMA-3.1-8B-instruct-ft shows a strong per-

formance boost with respect to LLaMA-3.1-8B-instruct

and LLaMA-3.3-70B-instruct-turbo. On the other

hand, GPT-4o-mini performance is in line with LLaMA-

3.1-8B-instruct-ft, and even surpasses it in Precision

and Accuracy. In general, our LLaMA-3.1-8B-instruct-

ft outperforms the baseline models. Figure 8 shows that

LLaMA-3.1-8B-instruct-ft performs the best on class

no, while GPT-4o-mini predicts class yes better.

6. Conclusions and Future Works

This study explores the ability of Large Language Models

(LLMs) to address Word Sense Disambiguation (WSD)

in Latin, a historically rich yet computationally low-

resourced language. The first contribution of our work is

the release of a dataset for evaluating the WSD abilities

of LLMs in Latin. This dataset is created by leveraging

an existing manually annotated dataset. Then, using the

new dataset and through both zero-shot and fine-tuned

evaluations, we observed that while general-purpose

LLMs exhibit a promising baseline ability to handle Latin

WSD, significant improvements are achieved through

task-specific fine-tuning. The fine-tuned LLaMA-3.1-8B-

instruct model outperformed larger and more resource-

intensive models in accuracy and F1 scores, underscor-

ing the impact of targeted instruction tuning, even on

medium-sized architectures. Nevertheless, challenges

remain. The dataset’s inherent class imbalance, with a

predominance of “unrelated” sense labels, likely influ-

enced the models’ predictions and underscores the need

for more balanced and semantically diverse training data.

Future work will focus on three main directions: i) Ex-

panding the annotated dataset to include more lemmata

and a broader variety of senses; ii) Evaluating model per-

formance on additional semantic tasks, such as definition

generation and contextual paraphrasing in Latin; iii) Ex-

ploring multilingual and cross-lingual transfer learning

strategies, leveraging annotations from related Romance

languages to further boost Latin model capabilities.
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A. Translation

Cicero’s Tuscolanae Disputationes

la: [...] Dico enim constanter grauiter sapienter for-

titer. Haec etiam in eculeum coiciuntur, quo uita

non adspirat beata. - Quid igitur? solane beata

uita, quaeso, relinquitur extra ostium limenque

carceris, cum constantia grauitas fortitudo sapi-

entia reliquaeque uirtutes rapiantur ad tortorem

nullumque recusent nec supplicium nec dolorem?

[...]

en: For I say constantly, gravely, wisely, and strongly.

These things are also cast into the rack, to which

life does not aspire for happiness. - What then?

Is a blessed life alone, I pray you, left outside the

door and threshold of the prison, when constancy,

gravity fortitude, wisdom and the other virtues

are snatched away to the torturer and refuse nei-

ther punishment nor pain?

Robertus Grossetest’s De libero arbitrio

la: [...] Ex quo fit, ut de nihilo creauerit omnia.” Ea-

dem itaque ratione solus facit ominia, nulla adi-

utus natura. Horum autem obiectorum solutio

haberi potest ut uidetur ex uerbis beati Bernardi

sic dicentis: “Ipsa gratia Liberum arbitrium exci-

tat, cum seminat cogitatum. Sanat, cum mutat

affectum; roborat, ut perducat ad actum; seruat,

ne sentiat defectum.” [...]

en: From which it comes about that He created all

things out of nothing.” Therefore, by the same

reasoning, He alone creates all things, without

any help from nature. But the solution to these

objections can be found, as can be seen from the

words of Blessed Bernard, who says thus: “Grace

itself awakens Free will when it sows thought. It

heals when it changes affection; it strengthens,

so that it may lead to action; it preserves, so that

it may not feel a deficiency.”

B. Confusion Matrices

Figure 1: GPT-4o-mini confusion matrix (regression task).

Figure 2: LLaMA-3.3-70B-instruct-turbo confusion matrix

(regression task).

Figure 3: LLaMA-3.1-8B-instruct confusion matrix (regres-

sion task).



Figure 4: LLaMA-3.1-8B-instruct-ft confusion matrix (re-

gression task).

Figure 5: GPT-4o-mini confusion matrix (binary task).

Figure 6: LLaMA-3.3-70B-instruct-turbo confusion matrix

(binary task).

Figure 7: LLaMA-3.1-8B-instruct confusion matrix (binary

task).

Figure 8: LLaMA-3.1-8B-instruct-ft confusion matrix (bi-

nary task).
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