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Abstract
Crossword clue difficulty is traditionally judged by human setters, leaving automated puzzle generators without an objective

yard-stick. We model difficulty as the Surprisal of the answer given the clue, estimating it with token probabilities from

large language models. Comparing three models three causal LLMs-Llama-3-8B, Llama-2-7B, and Ita-GPT-2-121M. with 60

human solvers on 160 hand-balanced clues, Surprisal correlates negatively with accuracy (r = –0.62 for nominal clues). These

results show that language-model Surprisal captures some of the cognitive load humans experience and that language-specific

training and model scale both matter; the metric therefore enables adaptive crossword generation and provides a new test-bed

for probing the alignment between human and model linguistic processing.
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1. Introduction
Crossword (CW) puzzles are among the most popular lan-

guage games, captivating millions through newspapers,

mobile apps, voice assistants, and even televised compe-

titions [1, 2]. The enduring appeal of crosswords across

formats stems from the careful calibration of clue diffi-

culty, which can range from accessible, beginner-friendly

prompts to highly intricate, expert-level challenges.

Despite advancements in automated puzzle gen-

eration, state-of-the-art systems like Dr. Fill [3] and

the Berkeley Crossword Solver [1], while capable of

outperforming many human solvers, still lack a reliable,

objective measure to assess the challenge posed by the

clues they generate. Traditional heuristics, such as clue

length, grid density, historical solve statistics, and letter
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Table 1
Linguistic properties for “piante che forniscono frutti per spre-
mute, aranci” (plants that provide fruits for juice – orange
trees).

Microcategory bareNP:rel
Macrocategory nominal
Accuracy 0.526
RTs (log10) 4.214
Surprisal 5.207

Table 2
Linguistic properties for “i mobili con le grucce, armadi” (the
furniture with hangers – wardrobes).

Microcategory defDP
Macrocategory nominal
Accuracy 1.0
RTs (log10) 3.973
Surprisal 3.926

frequency, only weakly reflect human solving effort,

failing to capture the subtle syntactic nuances, semantic

leaps, and playful misdirection intrinsic to crossword

difficulty [4].

Meanwhile, psycholinguistics provides a promising,

information-theoretic perspective [5] through the

concept of Surprisal, defined as the negative logarithm

of the probability of a word given its context. This

metric reliably predicts human cognitive effort, cor-

relating strongly with eye-tracking and self-paced

reading measures [6, 7, 8, 9]. Leveraging modern large
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language models (LLMs), which naturally compute

token probabilities, Surprisal becomes readily accessible.

Recent studies further emphasize the influence of model

scale and training domain on the alignment between

model-derived Surprisal and human cognitive patterns

[10, 11]. Notably, despite its potential, Surprisal has yet

to be explored specifically as a metric for crossword

difficulty.

Given the increasing prevalence and sophistication

of automated CW generation systems, there is now

a pressing need for a principled, data-driven metric

capable of accurately gauging puzzle difficulty. Such a

metric could facilitate adaptive tutoring tools, ensure

fairness in online competitions, and provide richer

psycholinguistic experimentation frameworks. In this

paper, we propose and investigate token-level Surprisal,

delivered by LLMs, as an innovative and robust candidate

for objectively quantifying crossword puzzle difficulty.

The current research represents the first attempt to

apply the surprisal metric in the context of crossword

puzzles, marking a novel approach to defining crossword

difficulty through computational linguistics measures.

To guide our investigation and evaluate the viability

of token-level Surprisal as an effective measure, we

formulate a central research question, summarized

clearly below. From this overarching inquiry, we

derive four specific, actionable research questions

(RQs) designed to systematically unpack the predictive

capabilities of Surprisal.

Main Question Can Surprisal computed by modern

LLMs serve as a reliable, fine-grained predictor of how

hard humans find a crossword clue?

To unpack this question, we address four research ques-

tions (RQs):

1. RQ1: To what extent does token-level Surprisal

correlate with human-measured difficulty (accu-

racy and solving time) for clue–answer pairs?

2. RQ2: How do model family and size—Llama-3,

Llama-2, Ita-GPT-2—affect predictive power?

3. RQ3: Which sentence-concatenation strat-

egy (clue cioè answer, copular rewrites,

topic–comment, etc.) yields the most reliable

Surprisal estimate for each clue category?

4. RQ4: Can Surprisal-based grading drive an adap-

tive crossword-generation pipeline that targets

specific solver skill levels?

Contributions

• Fine-grained linguistic taxonomy & bench-
mark —A curated set of 160 Italian clues span-

ning 20 syntactic categories, solved by 60 natives

(2 880 judgments), provides accuracy and solving-

time gold standards.

• Surprisal estimation framework —Five

generic concatenation rules turn any clue–answer

pair into a well-formed sentence with the answer

in final position; open-source code computes

multi-token Surprisal from any causal LM.

• Empirical findings —(i) Surprisal correlates

strongly and negatively with accuracy (best

𝑟 = −0.57) but only weakly with raw solving

times—stronger after log transform. (ii) Ita-GPT-2

and Llama-3 outperform larger, non-specialised

models. (iii) Predictive strength is category-

dependent; metalinguistic and copular clues re-

main challenging. (iv) Picking the right concate-

nation rule per category boosts correlation by up

to 0.15 𝑟-points.

• Recipe for adaptive generation —A demonstra-

tor workflow assigns category-specific Surprisal

thresholds, selects clues at desired difficulty, and

sketches integration with full-grid generation.

• Open resources —All data, annotation scripts,

Surprisal code, and analysis notebooks are re-

leased to foster reproducibility and future re-

search on cognitively informed puzzle genera-

tion.

Table 1 and 2 distils our guiding idea into one side-

by-side snapshot. For two carefully matched clues the

answer that GPT-2 finds more surprising (aranci) is also

the one humans solve more slowly and less accurately,

previewing our central claim: words that a transformer

language model finds less predictable also slow humans

down and trigger more errors. Numeric values are means;

RTs are log-transformed.

Headline results Surprisal from Ita-GPT-2 and Llama-

3 explains more than half the variance in human accuracy

for nominal clues, evidencing a robust link between prob-

abilistic prediction and perceived difficulty. The general

guiding framework adopted in this study is exemplified

in Table 5.

Paper layout Section 3.1 presents the dataset and tax-

onomy; Section 3.2 details concatenation rules and Sur-

prisal computation; Section 5 reports human and model

results; Section 6 applies the findings to adaptive genera-

tion; Section 7 concludes.

2. Related Work

2.1. Surprisal as a Psycholinguistic Metric
In recent years, Surprisal has been employed to evalu-

ate LLMs performances in psycholinguistic studies, in



correlation with online processing measures taken from

corpora, like Reading Times (RTs) [12, 13, 14, 15, 16], and

Event-Related Potentials (ERPs) [17, 18]. A key issue in

comparing LLMs linguistic competence and Human com-

petence consist in understanding at which human-like

degree LLMs represent Natural Language (NL). Human

linguistic competence does not rely on probability alone

[19, 20] and it is structure-driven, in contrast to LLMs

data-driven training [21, 22] and tend to underestimate

syntax with respect to human processing, in virtue of

their different mechanism of learning and understand-

ing [13] In this scenario Surprisal represents a ‘neutral’

measure which can account also for differences deriving

from various linguistic sources in a probabilistic frame-

work. [23] The understanding of the difference between

language in models and humans remains a central and

extremely relevant point in all the comparative studies

and in the analysis of the results. Following the line of re-

search described above, we aim at investigating whether

the same correlation - between processing difficulty and

Surprisal values – holds also for CW clue-answer pairs.

No prior work supplies a token-level, psycholinguisti-

cally grounded metric for per-clue difficulty. We import

LLMs Surprisal, validate it against 60 human solvers, and

show how it plugs into adaptive generation workflows.

2.2. LLMs and Cognitive Alignment
Large language models (LLMs) supply token probabilities

out of the box, enabling fine-grained surprisal estimates.

Layer-wise activations in GPT-, BERT- and Llama-style

models predict fMRI and MEG responses to naturalistic

text with striking accuracy [24, 25]. Model scale and train-

ing data modulate that alignment: bigger is not always

better for eye-movement predictivity, whereas deeper

layers in larger models often map best to slower neural

signals [26]. Tokenisation also matters: sub-word splits

can blur the link between model surprise and human

lexical access; aggregating sub-tokens or using morpho-

logically aware tokenisers improves fit [27]. By com-

paring three Italian-capable LLMs (Ita-GPT-2, Llama-2,

Llama-3), we contribute new evidence on how family,

size and training regime affect cognitive alignment in a

puzzle-solving context.

2.3. Crossword Solving & Generation
AI interest in crosswords began with the probabilistic

solver Proverb [28] and the web–based WebCrow sys-

tem [29]. Dr. Fill later recast clue filling as a single-

weighted CSP [3], while subsequent systems introduced

neural rerankers and hybrid IR–NLP pipelines [30]. Large

language models now push solver accuracy above 90 %

on New York Times puzzles [31].

Grid construction and clue writing pose a different chal-

Figure 1: Methodology overview. Colour-coded blocks show
data (blue), processing (grey), models (orange) and results
(green); arrows trace the workflow.

lenge. Early generators searched word-list constraints

for Italian crosswords and beyond [32, 33], later adapting

to Malay [34], Spanish [35] and Indian languages for edu-

cation [36]. More recently, Zeinalipour and collaborators

have spearheaded a multilingual, education-oriented re-

search programme: Italian educational grids [37], the We-
bCrow French solver [38], Arabic generators—including

both clue-focused ArabIcros [39] and a text-to-puzzle

pipeline [40]—, a Turkish generator [41], and the Clue-

Instruct dataset for pedagogy-centred clues [42]. To-

gether, these works illustrate a fast-growing ecosystem

of LLM-driven solvers and generators that operate across

languages and educational settings.

Despite this progress, no prior work proposes an objec-

tive, cognitively grounded difficulty metric. Published

systems label puzzles informally (“easy”, “hard”) or rely

on surface heuristics (grid density, answer length). By

linking LLM-derived surprisal to human accuracy and

solving times, our study closes this evaluation gap and

enables adaptive puzzle generation across languages.

3. Methodology
Our four–step pipeline (Fig.1) is: (1) scrape, clean, and

tag approximately 125 000 Italian clue–answer pairs into

20 syntactic categories; (2) turn each pair into a sentence

via five lightweight templates and compute answer–level

surprisal with Llama– 3, Llama– 2, and Ita –GPT– 2;

(3) obtain a human baseline from 60 native speakers

solving 160 balanced clues, yielding accuracy and log-

transformed solving times; and (4) correlate surprisal

with those measures and use category-specific thresh-

olds to power an adaptive crossword generator.



3.1. Data and Preprocessing
To evaluate the difficulty of crossword puzzles, we lever-

aged a comprehensive collection of Italian CW clues

and answers. The sources of the clues-answer pairs are

both internet sites that release solutions for CW clues,

https://www.dizy.com/ and https://www.cruciverba.it/,

that we scraped through apposite scripts. And also pdf
versions of famous Italian CW papers like Settimana Enig-
mistica and Repubblica, that we suitably converted to clue-

answer pairs. The various sources where than cleaned,

merged and the duplicates were removed. This dataset

consists of 125,600 entries that correspond to unique

clue-answer pairs. It includes clues related to different

domains, such as history, geography, literature, and pop

culture. The dataset under investigation contains a di-

verse array of linguistic features, including grammatical

structures, syntactic patterns, and lexical elements.

3.2. Linguistic Classification
The dataset of Italian clue-answer pairs has been syntacti-

cally analysed and different clue constructions have been

categorized with the aim of investigating what kinds of

structural operations can be applied to derive CW clues

from well-formed sentences. Being based on the syn-
tax of clue-answer pairs, the classification presented is

language-dependent on Italian.

In general terms, clues have been initially distinguished

into clausal and non-clausal structures depending on the

presence or absence of an inflected verb in the matrix

clause and, secondly, non-clausal clues can be articulated

in different structures varying in the nature of their heads:

Noun Phrases (NP), Determiner Phrases (DP), Preposi-

tional Phrases (PP), Adjectival Phrases (AdjP) and Adver-

bial Phrases (AdvP).

Clausal clues, on the other side, represent syntactically

relevant items in virtue of the presence of an inflected

verb in the matrix clause and they can be categorized on

that basis. Indeed these include clauses with verbal or

nominal predicates (i.e. copular sentences), and relative

clauses. These main categories differentiate internally,

and some subcategories can be accordingly defined. Once

some significant syntactic structures have been outlined

we can proceed with the classification of our unstruc-

tured corpus. It is important to highlight that the pro-

posed categorization is based on the generative grammar

approach thus, in the computation of classification rules

we considered the difference between the parser (depen-

dencies) and our hierarchical categorization. Categories

have been identified on the basis of the type of head,

and then further specified by additional features (if any)

like in the case of DP which can be of type definite or

indefinite.

First of all a qualitative data analysis has been carried out

using Regular Expressions (RegEx) and Part-of-Speech

(PoS) tagging that have been employed to extract exam-

ples of different syntactic constructions and see whether

their distribution was significant or not. The extraction

has then been improved using the python library spaCy

[43] and the dataset has been parsed using the \nlp func-

tion which allows us to identify the head node of each

clue. We identified 20 pertinent clue typologies for our

experiment summarized in Table 3. For further details

see the original work on CW linguistic analysis [44].

4. Experimental Setup
The research question that guides our experiment is

whether the probability of LLMs token can be used to

predict the difficulty of a clue-answer pair. The underly-

ing assumption is that Surprisal, as a complexity metric,

correlates to online measures of processing difficulty. For

this reason, we can consider Surprisal in relation to mea-

sures that we took as index of the difficulty of a CW clue,

which is expected to be visible in:

• Response Times (RTs): how long does it take to

solve the clue, i.e. reading,guessing and typing

the answer;

• Accuracy: How accurate is the answer.

Consequently, a trivial answer would have low Surprisal,

which means a high probability, and vice versa we can

consider high Surprisal, or low probability of the tar-

get word, as indicating a non-obvious, original answer.

Several psycholinguistic studies investigate language pro-

cessing in predicting next word, but no use of CW data

have been found on this task. Finding the word-answer,

given a definition, could be considered a type of next

word prediction task. In this case not only the proba-

bility of the word must be considered, but more than

that the Accuracy. Indeed, the right choice of the exact

word needed to fill the grid characterizes a CW task. The

current experimental proposal configures as an explo-

rative approach for a psycholinguistic treatment of CW

language, and as an attempt to investigate LLMs abilities

to grasp different levels of surprise, linguistic originality

in CW clues. The experimental setup consists of two

different paths, the results of which will be compared.

• Human Experiment: the first step consists of a

Solving Task to test participants and collect hu-

man responses. The absence of already annotated

corpora for CW language leads to the limitation

of having a constrained number of tested items,

for reasons of time and because they are hand-

designed.

• LLMs Surprisal Calculation: this limitation is

not encountered on the LLMs side, with which

https://www.dizy.com/
https://www.cruciverba.it/


Macrocategory Typologies Examples

copular cop:missSubj, copular sentence with subject omission Fu Cancelliere della Germania dal 1949 al 1963
= Adenauer

copular cop:clitic, copular sentence with a clitic in object po-
sition

Venere ne era la dea = bellezza

copular cop:pron, copular sentence with a pronoun in object
position

È celebre quella di Trinità dei Monti = scalinata

verbal predicate act:missSubj, active verbal sentences with subject
omission

Risiede in uno spazio geografico determinato
= abitante

verbal predicate act:clitic, active verbal sentences with a clitic in object
position

La segue il medico = ammalata

verbal predicate act:pron, active verbal sentences with a pronoun in
object position

Quelli d’America hanno per capitale Washing-
ton = Stati uniti

verbal predicate pass:missSubj, passive sentence with subject omission È detta Il Continente Bianco = Antartide
verbal predicate pass:other, other kinds of passive sentences Vi furono ritrovati noti bronzi = Riace
verbal predicate imp_refl:missSubj, active sentence with impersonal

pronoun or reflexive verb with subject omission
Si reca spesso al catasto = geometra

verbal predicate imp_refl:other, other kinds of active sentence with
impersonal pronoun or reflexive verb

Che si riferisce all’Università = accademico

infinitive inf_VP, infinitival verb phrases (VP) Investire di un grado = nominare
nominal bare_NP, bare noun phrases (NP) Infuso paglierino = tè
nominal bare_NP:rel, bare NP followed by a relative clause Cilindri commestibili che vengono affettati =

polpettoni
nominal def_DP, definite determiner phrases (DP) Il conto delle spese da farsi = preventivo
nominal def_DP:rel, DP followed by a relative clause Lo Stato di cui fanno parte le Isole Azzorre =

Portogallo
nominal ind_DP, indefinite DP Una brutta abitudine perdonabile = vizietto
prepositional PP, prepositional phrases Davanti a Rodrigo = Don
adjectival adjP, adjectival phrases Probo, retto = onesto
adjectival adjP:pron, adjectival phrases with pronoun Pittoresco quello siciliano = carretto
metalinguistic two-letters answer Il centro di Matera = TE

Table 3
Typologies of linguistic clues with corresponding examples and macro-categories

the entire dataset can be used without particular

time-issues. LLMs will assign word probabilities

to the clue-answer pairs and Surprisal will be

automatically measured starting from this output.

• Experimental Results: finally, the comparison

between Surprisal values and human measures

will tell us whether LLMs are able to correctly

predict the difficulty of a clue-answer pair.

4.1. Solving Task
Starting from our reference dataset, a set of clue-answer

pairs has been selected consisting of a limited number

of 8 items for 20 categories presented in 3.2. A total of

160 items have been organized into four lists, all equally

representative of the categories. Hence, a subject was

presented with one of these four lists and asked to solve

40 CW clues. 60 Italian native speakers were recruited

for the experiment. Participants were presented with a

clue, and they had to guess the solution, having at their

disposal only the length of the answer, represented as a

grid, and its initial letter. No time constraint was given

during the experiment. For each subject and each item

(2880 data points) in the experimental list we collected:

• The string representing the given answer.

• RT (response time) was measured as the interval

in milliseconds between the appearance of the

crossword clue and the submission of the answer.

This includes reading, comprehension, and typing

time.

Results will be presented in the following sections.

4.2. LLMs Surprisal Calculation
To assess how predictable crossword answers are for a

language model, we use the notion of surprisal, defined as

the negative logarithm of a token’s predicted probability.

In the case of full-word answers, we compute:

AnswerSurprisal = − log
(︀
𝑃 (answer)

)︀
(1)



where 𝑃 (answer) denotes the probability assigned by

the model to the answer. Because we work with causal
language models—which predict the next token based

only on the left-hand context—this surprisal is computed

as last word surprisal by placing the answer at the end
of a concatenated input, typically of the form clue +
answer. This ensures that the model encounters the

clue as context before attempting to generate or evaluate

the answer, in line with the left-to-right autoregressive

mechanism of causal models.

Crossword answers may consist of multiple tokens, as

in: I bambini possono riceverla dopo i sette anni = prima
comunione (‘kids can receive it after the seventh year

= first communion’). In these cases, the surprisal must

refer to the entire answer sequence. Letting the answer

consist of tokens 𝑡1, 𝑡2, . . . , 𝑡𝑛, the surprisal becomes:

AnswerSurprisal = −
𝑛∑︁

𝑖=1

log
(︀
𝑃 (𝑡𝑖)

)︀
(2)

This captures the cumulative surprisal of all the answer

tokens, assuming the clue and previous answer tokens

have already been processed.

In some cases, however, the format of the input

may place the answer at the beginning of the sequence,

rather than at the end, recalling a topicalized structure

[45, 46, 47, 48, 49]. The interesting thing is that, given

how the clues are phrased (as definitions or comments),

the most general structure would actually be that of topic

+ comment in which the comment or clue provides rele-

vant information about the answer that represents accord-

ingly the topic of the clue. This structure then constitutes

the most suitable strategy of concatenation in line with

the CW puzzle logic. For such reverse concatenations (e.g.,

answer + clue), however, standard Answer Surprisal

is no longer applicable because causal models, in virtue

of their incremental progressive nature, cannot condition

on future tokens. To address this, we introduce a comple-

mentary measure: Surprisal Difference. This measure

is used in all the concatenation rules that do not permit to

use the standard Answer Surprisal like the Topic-based

rule. So concatenation rules that have the answer at the

end use AnswerSurprisal while concatenation rules that

have the answer in the beginning use SuprisalDifference
as their surprisal score.

Surprisal Difference compares the surprisal of the clue

in isolation with the surprisal of the same clue following

the answer. It captures how much the presence of the

answer facilitates (or reduces the unexpectedness of) the

clue:

SurprisalDiff = 𝑆(𝑎+ 𝑐)− 𝑆(𝑐) (3)

where 𝑆(·) denotes surprisal, 𝑐 is the clue, and 𝑎 is the

answer.

This difference provides an interpretable surprisal-

based signal even when the answer appears before the

clue, a configuration that, as said, arises in certain exper-

imental concatenation schemes. The assumption is that

if the answer helps predict the clue, the clue’s surprisal

should be lower when preceded by the answer.

Both Answer Surprisal and Surprisal Difference rely

on the autoregressive, left-to-right prediction behavior of

causal models. For each concatenation strategy, the suit-

able Surprisal measure is calculated. To ensure linguisti-

cally accurate tokenization and probability estimates, we

use models that are pre-trained or fine-tuned on Italian

data.

4.2.1. Experimental items preparation for models
Surprisal

Complete sentences composed of clue and answer are

given in input to the models, thus it must be faced the

issue of concatenating clue and answer in grammatical

and coherent structures without substantially modifying

the clue style, syntactic characterization and meaning

and having the answer as final word so as to calculate its

Surprisal value after the context represented by the clue.

In most cases, the answer maintains a synonymy re-

lationship with the clue, which can often be expressed

using the Italian adverb cioè. This allows for an automatic

concatenation of clue-answer pairs, forming sentences

where the answer appears as the final word, such as

<clue> cioè <answer>.

To analyze how different concatenation strategies im-

pact Surprisal values, various concatenation rules have

been applied to the dataset, ensuring that each clue-

answer pair is formatted appropriately for model evalua-

tion. The employed concatenation methods are:

Different concatenations has been then employed:

Cioè rule <clue> cioè ART <answer>

Subject-based rule ART <answer> <clue>

Topic-based rule ART <answer> , <clue>

Copular rule ART <answer> VERB(TO BE) <clue>

Inverse-copular rule <clue> VERB(TO BE) ART
<answer>

Prompt rule Sei un cruciverbista esperto.
Ti verrà fornita una definizione a cui
dovrai rispondere correttamente. La
definizione è: <clue>. La risposta ha
<answer length> lettere, inizia con
<answer’s first letter>, <answer>

These different formulations allow for a comparative

analysis of Surprisal variations across clue structures,



ensuring that the most effective concatenation strategy

can be identified for each category.

For each item in the dataset, the model will calculate

the probability of each token, then the token compos-

ing the answer are used to estimate the Surprisal of the

answer given the other tokens. High Surprisal values

at the answer final word will tell us that the answer

is unexpected in that context, and consequently harder

to guess. Different types of Surprisal are so defined by

means of how data are labelled, by means of the different

concatenation rules. This opens the door to fine-grained

investigation in different directions. One rule could work

better with some categories than the others in enabling

the model to do more reliable predictions. The possibility

exists of elaborating specific rules for each structure of

clue-answer pair, in order to make input items as realistic

as possible and hence improve the model performance in

predicting human responses. To evaluate models’ perfor-

mances in predicting Accuracy and RTs, Surprisal values

will be compared with results collected in the human

experiment. The comparison should highlight:

• A positive correlation between Surprisal and RTs;

• A negative correlation between Surprisal and Ac-

curacy.

Different Surprisal have been calculated with different

models and with different concatenations rules. Pearson

coefficient will tell us more on the correlation between

these variables, human data and Surprisal (for the three

models employed). For both Accuracy and RTs we will

have:

• A global comparison, which tells us whether each

model’s Surprisal output is in a significant corre-

lation with human measures;

• The correlations between Surprisal and Accuracy

or RTs for each category, to observe whether more

relevant correlations are there for some of the

categories.

5. Experimental Results
The experimental results focus on the correlation be-

tween Surprisal values and human performance in solv-

ing CW clue-answer pairs. We tested this approach on

three models: Llama-3-8B
1

, Llama-2-7B
2

, and Ita-GPT-2

Medium-121M
3

. The mean Accuracy of participants in

the human experiment was found to be 0.63.

1meta-llama/Meta-Llama-3-8B
2meta-llama/Llama-2-7b-hf
3GroNLP/gpt2-small-italian

5.1. Correlation Analysis
To examine the relationship between Surprisal values

and human Accuracy, we first conducted a Pearson corre-

lation analysis using mean per-item accuracy scores. The

results revealed a negative correlation, consistent with

our hypothesis that higher Surprisal values correspond

to more difficult clues. Among the tested models, Llama3

and Ita-GPT2 yielded higher Pearson coefficients, which

may reflect Llama3’s extensive multilingual capacity and

Ita-GPT2’s fine-tuning on Italian. Figure 2 illustrates the

correlation between Surprisal and Accuracy for the three

models on a representative concatenation rule. In addi-

tion, Tables 11, 12, and 13 in the Appendix report a Gen-

eralized Linear Mixed Model (GLMM) analysis, which

incorporates individual variability without aggregating

accuracy values. This analysis further confirms Surprisal

as a significant predictor of Accuracy, and therefore of

clue difficulty.

We also investigated the relationship between surprisal

and response times (RTs) using a series of Linear Mixed

Models (LMMs) fitted separately for each concatenation

type. RTs were log-transformed to correct for positive

skew and stabilize variance, in line with standard psy-

cholinguistic practice. This transformation helped reduce

the impact of outliers and enabled the use of paramet-

ric modeling techniques. In each model, surprisal was

included as a fixed effect, and subject-specific intercepts

were modeled as random effects to account for baseline

variation across participants.

The results consistently showed a statistically signif-

icant positive relationship between surprisal and log-

transformed RTs across all concatenation types as sum-

marized in table 4 for Llama3 and the other two models in

the appendix (table 14, 15). This indicates that clues with

higher surprisal values led to longer response times, sup-

porting the hypothesis that surprisal reflects processing

difficulty. Although the magnitude of the effect varied

by concatenation rule, all coefficients were positive, and

confidence intervals did not include zero.

These findings demonstrate that surprisal is a robust

predictor of reading latency in the crossword task, even

under minimal context and with sparse surface cues. Im-

portantly, this effect emerges despite the lack of explicit

time pressure, suggesting that surprisal exerts an auto-

matic influence on processing effort.

While the overall pattern is clear, future research could

further refine the temporal precision of RTs by decom-

posing the overall response into distinct phases. Specifi-

cally, logging (i) the time to initiate typing, (ii) the typ-

ing duration, and (iii) the post-completion delay would

help distinguish comprehension time from motor and

decision-related delays. This would allow a more direct

mapping between linguistic difficulty and behavioral la-

tency, providing an even clearer picture of the cognitive

https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/GroNLP/gpt2-small-italian


Figure 2: Correlation between Surprisal and Accuracy for the three models with Topic Concatenation.

Concatenation Type Coef Std.Err z p-value CI Lower CI Upper

concatenation_topic_art 0.023 0.003 6.983 0.0000 0.017 0.030
concatenation_subj_art 0.029 0.003 9.726 0.0000 0.023 0.035
concatenation_cioè_art 0.034 0.005 6.600 0.0000 0.024 0.044
concatenation_cop 0.018 0.003 6.671 0.0000 0.013 0.024
concatenation_inv_cop 0.044 0.005 7.996 0.0000 0.033 0.055
concatenation_prompt 0.065 0.005 12.665 0.0000 0.055 0.075
solution 0.026 0.002 14.370 0.0000 0.023 0.030

Table 4
Linear Mixed Model results: effect of surprisal on log-transformed RT by concatenation type for Llama3

mechanisms involved.

5.1.1. Correlation in Different Categories

To further investigate how Surprisal correlates with hu-

man performance across different types of clues, we ana-

lyzed the correlation separately for different macrocate-

gories and individual categories. The results are visual-

ized in Figures 3 for the Ita-GPT-2 model. Our findings

indicate that the strength of the correlation between Sur-

prisal and Accuracy varies significantly depending on

the type of clue. In particular, two categories showed

notably weak correlations:

• Metalinguistic Clues: This category exhibited

no correlation between Surprisal and Accuracy.

A likely explanation is the difficulty transformers

face when processing metalinguistic cues, such

as wordplays and abbreviations. Since these mod-

els rely on token probabilities, and not on sin-

gle characters they struggle to accurately predict

non-standard or unconventional relationships be-

tween clues and answers, which are common in

metalinguistic clues.

• Copular Clues: The correlation was also absent

for copular structures. One probable reason is

that the cioè concatenation rule does not naturally

Macro Category Concat. type r p
infinitive topic_art -0.59 0.123
verb_pred subj_art -0.32 0.0177
metalinguistic cop -0.45 0.259
nominal topic_art -0.62 2.41e-05
copular prompt -0.12 0.578
prepositional topic_art -0.59 0.126
adjectival cioè_art -0.44 0.0884

Table 5
Best correlation coefficients (r) and p-values for each macro
category and concatenation type (Ita-GPT-2 Medium-121M).

fit the syntactic structure of these clues. Copular

constructions often require a more flexible para-

phrasing strategy, rather than a simple equiva-

lence statement, leading to suboptimal Surprisal

estimations.

Other categories, particularly nominal and verbal pred-

icate structures, displayed stronger correlations, suggest-

ing that Surprisal works better for categories where the

clue-answer relationship is more straightforwardly se-

mantic rather than dependent on linguistic nuances like

wordplay or syntactic constraints.

A more robust analysis with GLMMs, to account for

individual variability, will require more data for each cat-



Figure 3: Correlation between Surprisal and Accuracy across
different macrocategories for concatenation rule cioè_art and
model GPT-2.

egory. We leave this further effort to future experimental

work.

5.2. Effect of Concatenation Strategies
We also explored the impact of different concatenation

strategies on model performance. The concatenation

method influenced Surprisal values differently across clue

categories. Some structures benefited from the cioè rule,

while others yielded more reliable Surprisal estimates

under different approach.

Table 5 shows, for each macro category, the concate-

nation that yields the best correlation results and it’s

value. These results highlight the importance of category-

specific approaches when applying Surprisal-based diffi-

culty estimation.

5.3. Summary of Findings
Overall, our findings confirm that Surprisal serves as

a useful predictor of CW puzzle difficulty, particularly

when considering Accuracy as a measure of challenge.

However, its predictive power for solving times remains

limited, likely due to the nature of short CW clues. The

choice of concatenation strategy also plays a crucial

role in model performance, suggesting that tailored ap-

proaches could further refine Surprisal-based difficulty

estimations.

6. Conclusion
This paper provides the first cognitively grounded, auto-

matic gauge of crossword–clue difficulty. We compiled a

160-item Italian benchmark (2 880 human judgements),

converted each clue–answer pair into well-formed sen-

tences with five templates, and estimated token-level Sur-

prisal with three causal LLMs (Ita-GPT-2-121M, Llama-

2-7B, Llama-3-8B).

Answers to the research questions
1. RQ1: Higher Surprisal predicts lower solver accu-

racy (best 𝑟 = −0.57) and longer log-RTs, show-

ing that information-theoretic “surprise” mirrors

cognitive load.

2. RQ2: Language match beats raw size: the Italian-

specific Ita-GPT-2 and multilingual Llama-3 sur-

pass the larger, English-leaning Llama-2.

3. RQ3: No single template suffices.

Topic–comment placement works best for

nominal and verbal clues, the cioè rule for

many adjectival/infinitival ones, while copular

and metalinguistic items need ad-hoc rewrites;

selecting the best rule per macro-category adds

up to 0.15 𝑟-points.

4. RQ4: Category-specific Surprisal thresholds sep-

arate “easy”, “medium” and “hard” clues, enabling

an adaptive generator that targets any solver

level.

Main finding. LLM-derived Surprisal is a reliable, fine-

grained predictor of human crossword difficulty, explain-

ing more than half of the variance in accuracy for the

most common clue types.

Limitations (i) Italian-only data; other languages may

need new tokenisers. (ii) The 160-item set limits power

for rare structures. (iii) RTs blend reading, reasoning

and typing; keystroke logs would isolate comprehen-

sion latency. (iv) Only decoder-style LLMs were tested;

encoder–decoder or retrieval-augmented models might

align differently. (v) Clues were scored in isolation, ig-

noring cross-checks within full grids.

Future work
1. Scale the benchmark to thousands of clues, mul-

tiple languages and complete grids.

2. Log richer behaviour (eye-tracking, keystrokes,

EEG) to separate processing stages.

3. Probe new architectures and character-level to-

kenisers for closer cognitive fidelity.

4. Fuse Surprisal with real-time solver profiles for

personalised tutoring.

5. Couple Surprisal-based clue ranking with

constraint-based fills to deliver fully adaptive

crosswords.

Anchoring puzzle evaluation in probabilistic language

theory links NLP, psycholinguistics and game AI, promis-

ing crosswords that scale from novice amusement to

expert challenge while offering a fresh lens on hu-

man–machine language alignment.
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In the following section we report the complete results

for all llms and concatenation rules divided by macro cate-
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one correlation table for each model; see their individual
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Table 6
Concatenation type with highest correlation coefficients (r) and p-values for each macro-category (Llama2).

Macro Category Concatenation Type r p
infinitive concatenation_prompt -0.72 0.0428
verb_pred concatenation_cioè_art -0.34 0.0119
metalinguistic concatenation_topic_art -0.28 0.506
nominal concatenation_topic_art -0.37 0.0175
copular concatenation_cioè_art -0.25 0.243
prepositional concatenation_inv_cop -0.80 0.0168
adjectival concatenation_prompt -0.41 0.111

Table 7
Best correlation coefficients (r) and p-values for each macro-category and concatenation type (Llama3).

Macro Category Concatenation Type r p
infinitive concatenation_subj_art -0.51 0.192
verb_pred concatenation_prompt -0.37 0.00614
metalinguistic concatenation_cioè_art -0.42 0.305
nominal concatenation_topic_art -0.45 0.00385
copular concatenation_cioè_art -0.26 0.215
prepositional concatenation_topic_art -0.56 0.150
adjectival concatenation_prompt -0.60 0.0142

Table 8
Best correlation coefficients (r) and p-values for each category using Llama3.

Category Concatenation Type r p
inf_VP concatenation_subj_art -0.51 0.192
pass:other concatenation_cop -0.29 0.482
metalinguistic concatenation_cioè_art -0.42 0.305
imp_refl:missSubj concatenation_topic_art -0.95 0.00023
def_DP concatenation_topic_art -0.63 0.093
cop:missSubj concatenation_prompt -0.74 0.0373
PP concatenation_topic_art -0.56 0.150
cop:pron concatenation_cop -0.46 0.257
ind_DP concatenation_inv_cop -0.54 0.168
cop:clitic concatenation_subj_art -0.43 0.290
bare_NP:rel concatenation_cioè_art -0.65 0.083
adjP:pron concatenation_prompt -0.53 0.180
bare_NP concatenation_cop -0.39 0.342
adjP concatenation_cioè_art -0.72 0.0432
act:pron concatenation_inv_cop -0.58 0.128
act:missSubj concatenation_cop -0.43 0.284
def_DP:rel concatenation_inv_cop -0.54 0.165
imp_refl:other concatenation_cioè_art -0.79 0.0334
act:clitic concatenation_subj_art -0.60 0.114
pass:missSubj concatenation_prompt -0.70 0.0543



Table 9
Best correlation coefficients (r) and p-values for each category using Llama2.

Category Concatenation Type r p
inf_VP concatenation_prompt -0.72 0.0428
pass:other concatenation_prompt -0.38 0.348
metalinguistic concatenation_topic_art -0.28 0.506
imp_refl:missSubj concatenation_cioè_art -0.90 0.00256
def_DP concatenation_topic_art -0.48 0.234
cop:missSubj concatenation_inv_cop -0.31 0.450
PP concatenation_inv_cop -0.80 0.0168
cop:pron concatenation_prompt -0.49 0.217
ind_DP concatenation_cioè_art -0.45 0.262
cop:clitic concatenation_prompt -0.35 0.396
bare_NP:rel concatenation_cop -0.78 0.0217
adjP:pron concatenation_cioè_art -0.25 0.552
bare_NP concatenation_topic_art -0.56 0.145
adjP concatenation_prompt -0.86 0.00606
act:pron concatenation_topic_art -0.51 0.194
act:missSubj concatenation_cop -0.33 0.424
def_DP:rel concatenation_inv_cop -0.61 0.111
imp_refl:other concatenation_cioè_art -0.78 0.0367
act:clitic concatenation_topic_art -0.84 0.00979
pass:missSubj concatenation_cioè_art -0.58 0.134

Table 10
Best correlation coefficients (r) and p-values for for each category using GPT-2.

Category Concatenation Type r p
inf_VP concatenation_topic_art -0.59 0.123
pass:other concatenation_prompt -0.22 0.608
metalinguistic concatenation_cop -0.45 0.259
imp_refl:missSubj concatenation_topic_art -0.91 0.00163
def_DP concatenation_cioè_art -0.92 0.00111
cop:missSubj concatenation_prompt -0.4 0.326
PP concatenation_topic_art -0.59 0.126
cop:pron concatenation_cop -0.22 0.605
ind_DP concatenation_cioè_art -0.48 0.226
cop:clitic concatenation_prompt -0.08 0.853
bare_NP:rel concatenation_cioè_art -0.66 0.0725
adjP:pron concatenation_cioè_art -0.35 0.391
bare_NP concatenation_topic_art -0.71 0.0493
adjP concatenation_topic_art -0.69 0.0591
act:pron concatenation_subj_art -0.55 0.158
act:missSubj concatenation_cioè_art -0.13 0.765
def_DP:rel concatenation_cioè_art -0.44 0.271
imp_refl:other concatenation_prompt -0.78 0.0385
act:clitic concatenation_cop -0.93 0.00075
pass:missSubj concatenation_topic_art -0.76 0.0285

Table 11
Logistic Mixed Model results: effect of surprisal on accuracy by concatenation type for Llama3

Concatenation Type Coef Std.Err z p-value CI Lower CI Upper

concatenation_topic_art -0.064 0.008 -7.700 0.0000 -0.080 -0.048
concatenation_subj_art -0.063 0.007 -8.414 0.0000 -0.078 -0.048
concatenation_cioè_art -0.108 0.013 -8.431 0.0000 -0.133 -0.083
concatenation_cop -0.033 0.007 -4.865 0.0000 -0.046 -0.020
concatenation_inv_cop -0.111 0.014 -8.177 0.0000 -0.137 -0.084
concatenation_prompt -0.157 0.014 -11.315 0.0000 -0.184 -0.130



Table 12
Logistic Mixed Model results: effect of surprisal on accuracy by concatenation type for Llama2

Concatenation Type Coef Std.Err z p-value CI Lower CI Upper

concatenation_topic_art -0.032 0.008 -4.032 0.0001 -0.048 -0.017
concatenation_subj_art -0.034 0.008 -4.428 0.0000 -0.049 -0.019
concatenation_cioè_art -0.114 0.012 -9.178 0.0000 -0.138 -0.089
concatenation_cop -0.007 0.007 -0.924 0.3560 -0.021 0.007
concatenation_inv_cop -0.059 0.010 -5.870 0.0000 -0.079 -0.039
concatenation_prompt -0.016 0.004 -3.675 0.0002 -0.024 -0.007

Table 13
Logistic Mixed Model results: effect of surprisal on accuracy by concatenation type for GPT-2

Concatenation Type Coef Std.Err z p-value CI Lower CI Upper

concatenation_topic_art -0.113 0.010 -11.114 0.0000 -0.133 -0.093
concatenation_subj_art -0.029 0.005 -5.726 0.0000 -0.039 -0.019
concatenation_cioè_art -0.116 0.011 -10.886 0.0000 -0.137 -0.095
concatenation_cop -0.012 0.005 -2.413 0.0158 -0.022 -0.002
concatenation_prompt -0.107 0.011 -9.406 0.0000 -0.130 -0.085
concatenation_inv_cop -0.008 0.011 -0.701 0.4830 -0.029 0.014

Table 14
Linear Mixed Model results: effect of surprisal on log-transformed RT by concatenation type for Llama2

Concatenation Type Coef Std.Err z p-value CI Lower CI Upper

concatenation_topic_art 0.012 0.003 3.489 0.0005 0.005 0.018
concatenation_subj_art 0.019 0.003 5.935 0.0000 0.013 0.025
concatenation_cioè_art 0.046 0.005 9.280 0.0000 0.036 0.056
concatenation_cop 0.011 0.003 3.643 0.0003 0.005 0.017
concatenation_inv_cop 0.022 0.004 5.240 0.0000 0.014 0.030
concatenation_prompt 0.013 0.002 7.225 0.0000 0.009 0.016

Table 15
Linear Mixed Model results: effect of surprisal on log-transformed RT by concatenation type for GPT-2

Concatenation Type Coef Std.Err z p-value CI Lower CI Upper

concatenation_topic_art 0.034 0.004 8.890 0.0000 0.027 0.041
concatenation_subj_art 0.015 0.002 7.126 0.0000 0.011 0.019
concatenation_cioè_art 0.043 0.004 10.779 0.0000 0.035 0.051
concatenation_cop 0.010 0.002 4.676 0.0000 0.006 0.014
concatenation_prompt 0.058 0.004 13.215 0.0000 0.049 0.066
concatenation_inv_cop -0.009 0.005 -1.944 0.0519 -0.018 0.000
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