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Abstract

Positional bias in binary question answering occurs when a model systematically favors one choice over another based solely
on the ordering of presented options. In this study, we quantify and analyze positional bias across five large language models
(LLMs) under varying degrees of answer uncertainty. We re-adapted the SQUAD-IT dataset by adding an extra incorrect
answer option and then created multiple versions with progressively less context and more out-of-context answers, yielding
datasets that range from low to high uncertainty. Additionally, we evaluate two naturally higher-uncertainty benchmarks: (1)
WEBGPT question pairs with unequal human-assigned quality scores, and (2) WINNING ARGUMENTS, where models predict
the more persuasive argument in Reddit’s r/ChangeMyView exchanges. Across each dataset, the order of the “correct” (or
higher-quality/persuasive) option is systematically flipped (first placed in position 1, then in position 2) to compute both
Preference Fairness (PF) and Position Consistency (PC). We observe that positional bias is nearly absent under low-uncertainty

conditions, but grows exponentially when it becomes doubtful to decide which option is correct.
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1. Introduction

Large language models (LLMs) have demonstrated im-
pressive capabilities in a wide range of natural language
understanding and generation tasks, including open-
domain question answering (QA), summarization, and
dialogue [1, 2, 3]. However, their behaviors sometimes di-
verge from expectations of consistency and impartiality,
especially when exposed to subtle biases in input for-
matting or structure [4]. One pervasive phenomenon is
positional bias: the tendency of a model to prefer one an-
swer over another based purely on the position in which
each option is presented, rather than on semantic merit.
Positional bias can lead to systematic errors when models
are asked to choose between two or more alternatives and
may undermine trust in their outputs when reliability is
critical (e.g., in legal or medical contexts).

Prior work has documented position bias in classifica-
tion and question-answering tasks [5, 6, 7, 8, 9]. Yet, a sys-
tematic study of how positional bias scales with answer
uncertainty (the degree to which a model can confidently
distinguish between options) remains lacking. Intuitively,
under low-uncertainty conditions (e.g., when one answer
is clearly correct and context is provided), a well-trained
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model should consistently select the correct answer re-
gardless of its placement. As uncertainty rises, through
removal of context or through creating two equally plau-
sible (or equally out-of-context) options, models may in-
creasingly resort to spurious heuristics, including simply
favoring the first or second listed choice. Understanding
this phenomenon is critical for: (1) diagnosing model
weaknesses, (2) developing evaluation benchmarks that
detect fragile behaviors, and (3) designing interventions
that mitigate positional bias in downstream applications.

In this work, we conduct a comprehensive investiga-
tion of positional bias under varying degrees of uncer-
tainty and across five state-of-the-art LLMs: Llama-3.1-
8B, Gemma-3-12B (quantized), Gemini-1.5, Gemini-2, and
Phi4-14B (quantized).

We re-adapted SQUAD-IT [10] by generating binary
question—-answer pairs to create a series of benchmarks
with controlled uncertainty. The result is an expanded
dataset, which we call SQuAD-it-2. We decided to pro-
duce this dataset in Italian, as it is a language that remains
largely underrepresented in studies on positional bias and
answer ordering, allowing us to test models in a setting
where linguistic priors are less well-anchored. First, we
include the context and a plausible but incorrect distrac-
tor (low uncertainty). Next, we remove the context so
that the model must choose between the correct answer
and the distractor without supporting evidence (medium
uncertainty). Finally, we present two out-of-context dis-
tractors in place of the correct answer (high uncertainty).
We publicly release all generated versions.'

!https://github.com/tLabruna/SQuAD-it-2
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Figure 1: Overview of the five datasets used in the study, including the settings for each dataset: for the SQUAD datasets,

each includes two answers to a question, one correct and one

incorrect; for WebGPT and Winning Arguments, each dataset

consists of two possible messages with one annotated as higher quality or more persuasive. The figure also shows the five
LLMs evaluated, along with the two positional bias metrics used: Preference Fairness (PF) and Position Consistency (PC).

Additionally, we identified two datasets that involve
subjective judgments or nuanced quality comparisons.
The first is WEBGPT [11], which provides human-rated
preferences between pairs of model-generated answers
to the same question. The second is WINNING ARGU-
MENTSs [12], featuring pairs of Reddit r/ChangeMyView
responses to a single post, where only one reply earned
a “delta” for being deemed more persuasive.

Across these datasets, we measure positional bias us-
ing two complementary metrics (Preference Fairness and
Position Consistency) that capture whether and how of-
ten a model’s decision changes when the order of the
candidate answers is swapped. Through the experiments
we uncover a clear pattern: positional bias is negligible
when uncertainty is low but grows exponentially as un-
certainty increases. Moreover, we find that this effect is
especially pronounced in tasks requiring subjective judg-
ment, where models frequently default to order-based
heuristics in the absence of unambiguous signals.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews related work on position bias and fairness
in NLP. Section 3 details our dataset construction, exper-
imental protocols, and bias metrics. Section 4 presents
quantitative results and discusses the significance of the
outcomes. Finally, Section 5 concludes and outlines fu-
ture directions.

2. Related Work

The growing adoption of Large Language Models (LLMs)
in both generation and evaluation tasks has brought in-

creased scrutiny to their fairness, especially in contexts
involving binary or pairwise decisions. A prominent con-
cern is positional bias—a systematic preference for one
response over another based solely on its position in the
prompt, irrespective of content. Our work builds on and
differentiates itself from a body of literature that has ex-
amined this phenomenon under various evaluation and
reasoning paradigms.

The study by Shi et al. [13] offers the most compre-
hensive exploration of positional bias in LLM-based pair-
wise evaluation. They introduce three core metrics: Po-
sitional Fairness (PF), Positional Consistency (PC), and
Repetitional Consistency (RC), to systematically assess
how the order of candidate responses affects judgement
outcomes. Notably, they find that while most models
exhibit high repetitional consistency—i.e., deterministic
outputs across repeated trials—positional fairness and
consistency vary widely across tasks and models. Their
findings demonstrate that positional bias becomes espe-
cially pronounced when comparing responses of near-
equal quality, an observation that directly informs our
own approach of varying answer uncertainty to modulate
the ambiguity of binary choices.

While Shi et al. focus primarily on models acting as
evaluators, Wang et al. [14] provide compelling evidence
of position-sensitive scoring even in ostensibly objec-
tive comparisons. They show that GPT-4 tends to favour
the first answer while GPT-3.5 leans toward the second,
irrespective of prompt instruction, as also highlighted
by similar studies [4]. Their proposed mitigation strate-
gies—including Balanced Position Calibration (BPC) and
Multiple Evidence Calibration (MEC)—highlight the im-



portance of structural prompt design in mitigating these
biases. Our study similarly adopts systematic answer re-
ordering, but unlike Wang et al., we extend the analysis
to task formats beyond pairwise model evaluation, such
as QA under uncertainty.

Other work, such as [15], shifts the lens toward multi-
option multiple choice settings. The authors distinguish
between token bias—a preference for specific answer
IDs like “A” or “B”—and position bias—a preference for
answers based on ordinal position. Their central claim
is that token bias, not positional bias, is the primary
cause of inconsistencies in MCQ tasks, and they propose
PriDe, a debiasing method based on prior estimation.
While they conclude that positional bias is secondary
and often overestimated, our findings suggest that under
heightened uncertainty, position bias becomes marked,
particularly when correct answers are ambiguous and
out-of-context.

The PORTIA framework proposed by another recent
study [16] presents an architectural solution to reduce
positional dependency by restructuring the input through
segmental alignment. Although PORTIA is designed for
evaluator settings, its contribution lies in demonstrating
that careful content interleaving can dampen reliance
on positional heuristics. While our methodology does
not employ PORTIA-like restructuring, it shares a core
intuition: positional effects intensify when content cues
are weak or ill-formed, a condition we explicitly engineer
through dataset manipulation.

The CALM framework [17] offers a general-purpose
protocol for quantifying a wide range of biases in
LLM-as-a-judge settings. Its automated perturbation
method—swapping candidate positions to detect volatil-
ity in outcomes—serves as a direct methodological prece-
dent for the Position Consistency metric. Moreover,
CALM’s observation that positional bias scales with the
number of response options aligns with our finding that
bias intensifies when answer certainty decreases.

In contrast to all aforementioned works, our study
offers a novel synthesis of two research trajectories: bi-
nary positional evaluation under uncertainty and large-
scale QA-based benchmarking. By systematically con-
trolling for answer ambiguity across datasets derived
from SQuAD-it, WebGPT, and Reddit’s r/ChangeMyView
(Winning Arguments dataset), we demonstrate that po-
sitional bias is not merely an artefact of model prompt
formatting or answer labelling conventions. Rather, it
reflects a deeper tendency of LLMs to resolve ambiguity
through positional priors—a phenomenon that expands
the scope of prior observations made in evaluation-only
contexts. Furthermore our work empirically substan-
tiates the claim that positional bias is conditional—not
fixed—and emerges as a second-order inference strategy
when primary cues are degraded.

In sum, our contribution lies in bridging the gap

between diagnostic evaluator studies and answer-
generation tasks, showing that positional bias is neither
an isolated nor a negligible phenomenon, but one that
is sensitive to context, task framing, and content quality.
This dual framing broadens the understanding of bias
in LLMs and calls for future work on uncertainty-aware
prompt and dataset design.

3. Methodology

In this section, we describe the construction of our po-
sitional bias benchmarks, the experimental protocol for
prompting and evaluation, the set of language models
under investigation, and the metrics used to quantify
positional bias. Figure 1 shows a visual summary of the
methodology.

3.1. Datasets

To systematically investigate positional bias under vary-
ing levels of uncertainty, we constructed a new bench-
mark suite, SQUAD-1T-2, derived from the Italian SQUAD-
1T dataset [10] and spanning three uncertainty condi-
tions: Low, Medium, and High. In addition, we employed
two existing datasets—WEBGPT and WINNING ARGU-
MENTS—which capture human preference in more sub-
jective decision-making contexts.

Each dataset is structured around binary-choice in-
stances, represented either as quadruples (C, Q, A1, A2)
or triples (Q, A1, A2), where C is an optional context, Q)
is a question or prompt, and (A1, A2) are candidate an-
swers. One answer is designated as the preferred choice,
while the other serves as a distractor.

SQuAD-it-2 Low Uncertainty. This setting builds
upon the SQUAD-IT dataset [10], a semi-automatic Ital-
ian translation of the original English SQUAD dataset
[18]. Each sample in SQUAD-IT is structured as a triple
(Q, C, Acorr), where @ is a question, C' is a supporting
context passage, and Acorr is the correct answer, which
is always explicitly contained in the context.

However, for our study on positional bias in binary-
choice settings, we needed pairs of answer candidates:
one correct and one incorrect. To construct these, we
used Gemini-2 to generate a plausible but incorrect an-
swer (Aplaus) for each sample in SQUAD-1IT. Specifically,
we prompted Gemini-2 with the context C, the question
@, and the correct answer Acor, instructing it to generate
an alternative answer that is plausible—meaning it could
conceivably be a correct answer based on the question,
but is in fact incorrect. The exact prompt used is included
in Appendix A.

This resulted in a dataset where each instance takes the
form (C, @, Acorr, Aplaus)- The presence of the context C



provides strong evidence in favor of the correct answer,
minimizing ambiguity and uncertainty in the model’s
decision. This version is intended to simulate the lowest
level of uncertainty, where one answer is clearly sup-
ported by the context and the other, while plausible, is
not. While we generated and publicly released SQUAD-
1T-2 for both training and test splits, we consider only
the test set, which includes 7,609 samples, for the exper-
iments of this paper.

SQuAD-it-2 Medium Uncertainty. In this version,
we reuse the same set of samples from the Low Uncer-
tainty setting, including the same plausible incorrect an-
swers generated by Gemini-2. However, to increase the
level of uncertainty, we deliberately remove the context
C from each sample. This modification results in in-
stances of the form (Q, Acorr, Aplaus ), Where the model is
asked to choose between two answers without access to
the supporting information.

In the absence of context, the task becomes signifi-
cantly more challenging. While the correct answer re-
mains correct in an absolute sense, the model cannot rely
on evidence from the passage to make its choice. Some-
times, the question can still be answered using world
knowledge or intuition; other times, it becomes virtually
impossible to determine which answer is correct based
solely on the question. As a result, this version intro-
duces a medium level of uncertainty, greater than in the
contextualized setting, but not entirely arbitrary, since
one answer is still grounded in the original question. The
dataset comprises 7,609 samples from the test split.

SQuAD-it-2 High Uncertainty. This version repre-
sents the maximum level of uncertainty, simulating a
scenario in which the model must choose between two
equally ungrounded options. Here, we prompt Gemini-2
to generate two completely out-of-context (ooc) answers
for each question (). The prompt (included in Appendix
A) provides the question, the context and the correct
answer, instructing Gemini-2 to generate two answers
that are non-plausible, that is, they should not reasonably
answer the question and should bear no clear relation to
the topic.

The resulting
(Q, Ag:;c), A£§2 ), where both answers are distrac-
tors. Since neither candidate is appropriate or grounded
in the question, there is no clear basis for choosing one
over the other. In this setting, the model’s decision is
expected to approximate random guessing, and the task
itself loses semantic validity. Nonetheless, we include
this version to simulate conditions of extreme ambiguity
and explore how models behave when confronted with
entirely unsupported, content-free binary choices. This
allows us to probe the outer limits of positional bias,

instances are structured as

where no rational basis for preference exists. Also this
version includes 7,609 samples from the test split.

Overall, the three SQUAD-1T-2 variants form a con-
trolled uncertainty spectrum, from minimal ambiguity
in the Low Uncertainty setting to total ambiguity in the
High Uncertainty setting, enabling us to systematically
study how large language models respond to answer or-
dering under varying epistemic conditions.

WebGPT. The WebGPT dataset [11] was introduced
to support research in aligning long-form question an-
swering systems with human preferences. It consists
of 19,578 comparisons between pairs of answers to the
same open-ended question, each annotated with human
preference scores. These answers were originally gener-
ated by a GPT-3 model fine-tuned via imitation learning
and further optimized using reinforcement learning from
human feedback (RLHF). Each comparison includes meta-
data such as the browsing quotes used to compose the an-
swers and the associated preference scores, which range
from —1 to 1 and indicate which answer is preferred by
annotators.

For our work, we extracted a subset of this dataset
focusing on clear preference signals. Specifically, we
selected only those examples in which the two answers
received different human scores (s # s(?), ensuring
a clear distinction between a preferred answer and a less
preferred (distractor) one. This yielded to a total of 14,346
samples for our experiments. From each of these selected
examples, we constructed input triples (Q, Aprer, Adist),
where @ is the original question, Ay is the answer
with the higher human score, and Ag is the lower-rated
alternative. To standardize the task, we reformulated the
original human instruction, used during annotation to
guide raters in evaluating answer quality, as a prompt
question asking the model to choose the better answer.

Winning Arguments. This dataset [12] is derived
from the r/ChangeMyView subreddit, where users post
their opinions and invite others to persuade them to
change their views. In this setting, the original poster
(OP) can award a “delta” (A) to a reply that successfully
changed their mind. The dataset contains conversation
threads enriched with metadata indicating which replies
received a delta, making it a valuable resource for study-
ing persuasion and argument quality.

To construct comparison pairs, the original dataset
creators used a controlled pairing strategy: each delta-
awarded reply (i.e., persuasive) was matched with the
most similar reply in the same thread that did not receive
a delta (i.e., less persuasive), based on Jaccard similarity.
This yields pairs of messages that are highly comparable
in content but differ in perceived persuasiveness, allow-
ing fine-grained analysis of what makes one argument



more compelling than another. As with WebGPT, this
dataset centers on subjective human preferences, making
the task inherently uncertain and nuanced.

For our experiments, we used only the test set provided
with the dataset, consisting of 807 pairs. Each instance
was structured as a triple (P, M _pref, M _dist), where P
is the original post, M _pref is the reply that received the
delta, and M _dist is the similar, non-awarded reply. To
reproduce a maximum uncertainty setting and prevent
models from relying on contextual cues from the original
post, we only include the two replies (M _pref, M_dist)
in each instance, excluding P entirely. This dataset adds a
valuable dimension to our evaluation by focusing on real-
world argumentative discourse and subjective judgments
of persuasive effectiveness.

3.2. Experimental Protocol

We adopt a two-pass prompting strategy to evaluate po-
sitional bias across the five datasets introduced in Sec-
tion 3.1. The Low and Medium Uncertainty versions
of SQUAD-1T-2 are derived from the same underlying
dataset; the difference lies in whether the context is pro-
vided: it is included in the Low Uncertainty setting and
omitted in the Medium one. All other datasets are evalu-
ated without any context.

Each instance consists of a prompt X, a preferred an-
swer Aprf, and a distractor Agis. For every evaluation
condition, we proceed as follows:

1. Pass 1 (Original Order). We construct Prompt;,
placing Apr as Option 1 and Ay as Option 2,
alongside the question and, where applicable, the
context. The prompt is submitted to the target
model, and its response is recorded as cw,

2. Pass 2 (Swapped Order). We construct Prompt;
by inverting the order of the two answers. The
instructional text and context (if any) are kept
idc(er;tical. The model’s response is recorded as
c®,

Prompt phrasing is tailored to the semantics of each
dataset and is reported in Appendix B. In all cases, the
prompts in Pass 1 and Pass 2 are structurally identical
except for the position of the two candidate answers. The
model’s raw selections C) and C® are logged without
transformation and later used in the analysis of positional
bias.

3.3. Models Evaluated

We benchmark five state-of-the-art large language mod-
els (LLMs), selected to cover a spectrum of architectures,
parameter scales, and deployment configurations. All
models are developed by leading organisations in the

field of foundation model research, including both open-
weight and proprietary providers.

+ LLaMA-3.1-8B: An 8-billion-parameter open-
weight model [19] following the LLaMA architec-
ture, fine-tuned for Italian, and released in late
2024. Its compact size makes it well-suited for
downstream use in resource-constrained scenar-
ios.

« Gemma-3-12B (quantized): A 12-billion-
parameter open-weight multilingual model, [20]
quantized to 4-bit precision (Q4_K_M) retrieved
via the Ollama model hub. This quantised variant
is employed for efficiency under computational
constraints.

+ Gemini 1.5: A proprietary multilingual model
[21] from Google DeepMind, specifically tailored
for QA tasks.

« Gemini 2: The successor to Gemini 1.5, featur-
ing architectural improvements and retraining on
updated corpora.

« Phi-4-14B (quantized): A 14-billion-parameter
open-weight multilingual model, [22] quantized
to 4-bit precision (Q4_K_M) retrieved via the Ol-
lama model hub. Like Gemma-3, this model is
used in its quantized form to enable evaluation
under limited computational resources.

Quantized models are adopted primarily due to hard-
ware and latency constraints. To ensure validity, we con-
ducted a preliminary test comparing the quantized and
full-precision variants of each model on a 100-instance
subset of the WINNING ARGUMENTS dataset. The results
showed almost identical accuracy across both versions,
suggesting that quantization does not substantially af-
fect model preference or correctness in our evaluation
setting.

3.4. Bias Metrics

To quantify positional bias in model preferences, we
adopt two significant metrics: Preference Fairness (PF), in-
troduced by Shi et al. [13], and Position Consistency (PC),
a widely adopted measure in the positional bias literature
and also discussed in their work.

We do not consider Repetitional Consistency (RC) (also
introduced by Shi et al.), which measures model stability
across repeated identical queries, as we believe it is not
sufficiently related to positional bias and not computable
under our two-pass evaluation protocol.

3.4.1. Preference Fairness (PF)

PF quantifies directional positional bias: the extent to
which a model favors one answer position (first or sec-
ond) independently of content. However, in our setting,



we focus on the magnitude of this bias, regardless of
whether it leans toward the first or second option. To
this end, we report the absolute value of the PF score, so
that it ranges from 0 (no bias) to 1 (maximal bias).

Formally, we compute a raw PF score (PFya,) following
Shi et al. [13]:

PFray = (rcn X irr) — (pen X ipr),
where:

« pcn is the normalized count of times the model
prefers the first (primacy) position.

« rcn is the normalized count of times the model
prefers the second (recency) position.

« iprand irr are the fractions of instances where
the preferred answer was placed in the first and
second position, respectively.

To ensure comparability across datasets and evaluation
setups, the raw score is normalized using its theoretical
minimum and maximum values:

PFrav — mi
pr— (gt ) xa o,

Srtax - S_‘

min

where S, and S;f,,., are the minimum and maximum
achievable values of PF,,y, respectively, under the given
conditions. This normalization centers the scale around
zero and bounds it between —1 and 1.

Finally, we report the absolute value of the resulting

PF score:

|PF| € [0,1],
so that:

« |PF| = 0 indicates no positional bias (preference
is content-based and consistent).

« |[PF| = 1 indicates maximum positional bias
(model always favors one position regardless of
content).

« Intermediate values reflect increasing degrees of
positional influence on preference.

3.4.2. Position Consistency (PC)

PC assesses stability rather than directionality: it mea-
sures how often the model selects the same answer before
and after the answer order is swapped. Formally:

N

1
F 2 1e =c®),

i=1

PC =

where CY) € {A,B} is the option chosen by the
model at pass 7, and I(+) is the indicator function.

+ Avalue of PC = 1 indicates full positional robust-
ness: the model’s choice is unaffected by option
order.

« Lower values imply that the model’s preference
changes depending on which position the an-
swers are presented in.

PF and PC capture orthogonal phenomena: PF indi-
cates directional preference bias, while PC reflects robust-
ness to positional perturbation. We report both metrics
across all model-dataset pairs.

4. Results and Discussion

Table 1 reports the performance of various models on
binary QA tasks across datasets with varying levels of un-
certainty. Each model is evaluated under two conditions:
when the correct answer is presented first and when it
is presented second. Additionally, we report the number
of invalid responses, i.e., outputs not conforming to the
expected binary format. Figure 2 provides a visualization
of the magnitude of positional bias, with bars showing
the values of PF (reported in absolute value) and PC for
every model and dataset evaluated. In this plot, higher PF
values indicate stronger positional bias, while lower PC
values correspond to reduced position consistency and
thus higher bias. While the figure offers an immediate
overview of how bias varies across datasets and mod-
els, the accuracy table provides more detailed insights
into model behavior, revealing specific patterns such as
systematic preference for a given position or consistent
shifts in performance depending on answer order.

SQuAD-it-2 Low Uncertainty Under low uncertainty,
performance is high and relatively stable. All models
(except Llama) maintain accuracy above 90% across both
conditions. This indicates that when questions are clear
and straightforward, the models perform robustly and
are less sensitive to presentation order.

SQuAD-it-2 Medium and High Uncertainty As un-
certainty increases, performance drops and order effects
become more pronounced. In the medium uncertainty
setting, accuracy generally decreases across models, and
some models (e.g., Gemini-2 and Phi4-14B-Q) actually
perform slightly better when the wrong answer is pre-
sented first. This may reflect a shift in reliance from
positional bias to internal reasoning mechanisms.

In the high uncertainty setting, models diverge sharply.
For example, Llama-3.1-8B shows a drastic drop in ac-
curacy when the wrong answer is presented first (from
0.648 to 0.108), indicating a strong sensitivity to order
under ambiguous conditions. In contrast, Gemma-3-12B-
Q improves when the wrong answer is first (from 0.411



Table 1

Model performance on binary QA tasks, comparing accuracy when the correct answer is presented first versus second, along
with the number of invalid responses for each experiment (i.e., when the model did not produce the expected output format).

Dataset Model Correct-first Wrong-first
Accuracy #Invalid Accuracy # Invalid
SQuAD-it-2 Llama-3.1-8B 0.940 22 0.846 5
Low Uncertainty Gemma-3-12B-Q 0.918 0 0.907 0
Gemini-1.5 0.930 37 0.909 10
Gemini-2 0.930 17 0.913 26
Phi4-14B-Q 0.923 26 0.912 21
SQUAD-it-2 Llama-3.1-8B 0.662 507 0.288 2026
Medium Uncertainty ~ Gemma-3-12B-Q 0.695 0 0.662 0
Gemini-1.5 0.765 112 0.612 22
Gemini-2 0.693 137 0.762 132
Phi4-14B-Q 0.637 209 0.761 184
SQuAD-it-2 Llama-3.1-8B 0.648 1897 0.108 1849
High Uncertainty Gemma-3-12B-Q 0.411 0 0.590 16
Gemini-1.5 0.616 908 0.262 940
Gemini-2 0.256 1727 0.522 1701
Phi4-14B-Q 0.705 420 0.288 1448
WebGPT Llama-3.1-8B 0.837 20 0.372 17
Gemma-3-12B-Q 0.736 2 0.563 0
Gemini-1.5 0.791 13 0.490 6
Gemini-2 0.649 0 0.696 2
Phi4-14B-Q 0.788 23 0.505 14
Winning Arguments Llama-3.1-8B 0.411 1 0.758 12
Gemma-3-12B-Q 0.302 0 0.823 0
Gemini-1.5 0.321 0 0.808 0
Gemini-2 0.470 0 0.766 0
Phi4-14B-Q 0.178 56 0.820 62

to 0.590), suggesting a different processing dynamic. In-
valid responses spike in this setting, especially for Llama
and Gemini models, indicating a higher difficulties in
producing well-formed answers when the uncertainty is
higher.

WebGPT and Winning Arguments Real-world
datasets present an additional layer of complexity. In the
WebGPT task, most models follow the trend observed in
synthetic settings: higher accuracy when the correct an-
swer comes first. However, Gemini-2 again deviates from
this pattern, performing slightly better in the wrong-first
condition.

In the Winning Arguments dataset, which features
highly opinionated and subjective content, the reversal is
particularly pronounced: all models consistently perform
better when the correct answer is presented second. For
instance, Gemma-3-12B-Q improves dramatically from
0.302 to 0.823 accuracy in the wrong-first setting. This
striking and systematic pattern suggests that models may
be influenced not just by answer content but also by
presentation dynamics, such as contrastive framing or

cumulative reasoning, where the second answer is im-
plicitly treated as a refinement or counterpoint to the
first. It is also possible that models trained on internet
discussions and dialogues have internalized discourse
norms in which stronger or more convincing arguments
often follow weaker ones in order to rebut or build upon
them. This behavior warrants further investigation, as it
may reveal underlying heuristics the models rely on in
persuasive or opinionated domains.

General Trends and Considerations Across
datasets, several consistent patterns emerge, high-
lighting how model behavior in binary QA tasks is
influenced by a complex interplay of input uncertainty,
answer ordering, and model architecture. Most models
perform better when the correct answer is presented
first, particularly under low uncertainty conditions,
suggesting a tendency to favor the first option when
questions are clear and unambiguous. However, in the
Winning Argument dataset, which involves persuasive
argumentation, all models systematically perform better
when the correct answer is presented second. The
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Figure 2: Visualization of positional bias across models and datasets, reported by the absolute value of Preference Fairness
(PF) (higher absolute values indicate stronger bias) and Position Consistency (PC) (lower values indicate stronger bias).

magnitude and consistency of this reversal suggest a
strong bias toward the second option in subjective or
argumentative contexts, possibly influenced by discourse
structure or rhetorical patterns in the training data.

As uncertainty increases, the impact of answer order-
ing becomes more marked across models and datasets.
While many models demonstrate robustness under low
uncertainty, with small performance differences between
correct-first and wrong-first conditions, their behavior
becomes significantly more unpredictable and order-
sensitive with higher uncertainty. This growing sen-
sitivity is particularly evident in Figure 2: as the input
becomes more ambiguous or subjective, such as in the
SQuAD-it-2 High Uncertainty and Winning Arguments
settings, models increasingly deviate from uniform be-
havior and show strong biases. This trend suggests that
models may resort to positional heuristics or discourse-
level patterns under stress, rather than relying on se-
mantic fidelity alone. When varying the uncertainty
level in SQuAD-it-2 (from Low to High Uncertainty) a
clear pattern emerges: the rate of invalid outputs consis-
tently increases, highlighting the difficulty models face in
maintaining output consistency and adhering to format
constraints as the task becomes less structured.

5. Conclusion

In this work, we conducted a systematic investigation
of positional bias in large language models using binary-
choice prompting. We evaluated five different LLMs
across both controlled tasks and real-world datasets, and
introduced a novel benchmark, SQUAD-1T-2, to study
this phenomenon in Italian, an underrepresented lan-
guage in current LLM evaluation efforts. SQUAD-1T-2
includes binary QA tasks at three uncertainty levels, en-
abling fine-grained analysis of how answer ordering in-
teracts with ambiguity.

Our findings reveal a clear trend: as input uncertainty
increases, so does positional bias. Under low uncertainty,
models exhibit high accuracy and almost identical perfor-
mance whether the correct answer is presented first or
second, indicating minimal or no bias in these conditions.
However, as uncertainty rises, due to the removal of con-
textual cues or the subjective nature of the task, models
begin to show strong and often inconsistent positional
preferences.

We used two dedicated metrics to quantify these ef-
fects: Preference Fairness (PF), which captures how much
a model favors one position over another, and Position
Consistency (PC), which reflects how stable model deci-
sions are across different answer orderings. Both metrics
show clear deterioration as uncertainty increases, con-
firming that models rely more heavily on position-based
heuristics when semantic cues are weak.

A particularly striking result comes from the WINNING
ARGUMENTS dataset, where all models systematically pre-
fer the second option—even when it is incorrect. This
behavior suggests that models may be influenced not
only by answer content but also by presentation dynam-
ics, such as contrastive framing or cumulative reasoning,
possibly reflecting discourse norms internalized during
training, where stronger arguments often follow weaker
ones to refine or counter them.

These results expose a fundamental limitation in cur-
rent LLMs and highlight the need for robust evaluation
and debiasing strategies, especially in high-stakes or sub-
jective scenarios. Our release of SQUAD-1T-2 provides
a valuable tool for continued research, offering a scal-
able and controlled benchmark for assessing positional
artifacts, particularly in multilingual contexts.

Future work should explore the mechanisms behind
position-based preferences more deeply, with special at-
tention to how models process discourse structure, con-
trastive reasoning, and pragmatic cues. Better under-
standing these behaviors will be crucial for developing



more interpretable, trustworthy, and bias-resilient mod-
els. Additionally, it would be valuable to introduce a
third option (e.g., “neither response is valid”) in future
evaluations, as we observed that models often implicitly
reject both candidates when neither is convincing. Inves-
tigating how model behavior changes with the inclusion
of such an option could offer further insight into their
decision-making strategies under uncertainty.
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A. Prompts for SQuAD-it-2 Dataset

Generation

A.1. Prompt for Low and Medium
Uncertainty Settings

For the SQUAD-1T-2 Low and Medium Uncertainty vari-
ants, we used a single prompt to generate a plausible but
incorrect answer. The input to the model includes the
original context passage, the question, and the correct
answer. The model is explicitly instructed to generate an
answer that could reasonably be interpreted as correct
(i.e., plausible), while being in fact incorrect. The exact
prompt is shown below:

Contesto: <CONTEXT>
Domanda: <QUESTION>

Risposta corretta: <CORRECT_ANSWER>

Fornisci una risposta plausibile ma sbagliata
alla domanda sopra, basandoti sul
contesto. Restituisci solo la risposta,
senza spiegazioni o altro.

This prompt ensures that the incorrect answer remains
semantically coherent with the question and context, but
does not match the correct answer.

A.2. Prompting Strategy for High
Uncertainty Setting

For the High Uncertainty setting, we followed a two-step
prompting process to construct a pair of out-of-context
(OOC) incorrect answers. The correct answer is used
during generation but removed from the final dataset to
increase ambiguity.

Step 1: First Out-of-Context Answer. The model
receives the context, the question, and the correct an-
swer. It is asked to generate an incorrect answer that is
completely unrelated to the provided context, ensuring
it is not plausible or grounded. The prompt used is:

Contesto: <CONTEXT>

Domanda: <QUESTION>

Risposta corretta: <CORRECT_ANSWER>

Fornisci una risposta completamente fuori
contesto e sbagliata alla domanda sopra.
Assicurati che non sia basata sul
contesto fornito. Restituisci solo la

risposta, senza spiegazioni o altro.

Step 2: Second Out-of-Context Answer. The model
is then prompted again with the same context, question,
and correct answer, along with the previously generated
out-of-context wrong answer. This time, it is asked to
produce a second, distinct out-of-context answer. The
corresponding prompt is:

Contesto: <CONTEXT>

Domanda: <QUESTION>

Risposta corretta: <CORRECT_ANSWER>
Risposta errata: <WRONG_ANSWER_1>

Fornisci una risposta completamente fuori
contesto e sbagliata alla domanda sopra.
Assicurati che non sia basata sul
contesto fornito e che sia diversa dalla
risposta errata gia’ presente.
Restituisci solo la risposta,
spiegazioni o altro.

senza
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Final Construction. Once both out-of-context an-
swers are generated, we discard the original context and
the correct answer, retaining only the question and the
two OOC distractors. The final dataset entries are struc-
tured as:

1 2
(Q, AR, AR
This setup simulates maximal uncertainty, as neither

of the candidate answers is relevant or correct, forcing
the model to rely solely on positional priors or heuristics.

B. Prompt Templates

We report here the prompt templates used in the experi-
ments described in Section 3.2. Each dataset required a
prompt adapted to its semantic framing and language.

SQUAD-IT-2. These prompts are in Italian. When con-
text is present (Low Uncertainty), it is introduced with
“Contesto:”. The rest of the prompt follows this struc-
ture:

Domanda: [Q]
A) [Risposta 1]
B) [Risposta 2]

The final instruction depends on the uncertainty level:

+ Low Uncertainty (with context):
Scegli la risposta
Restituisci solo A o B.

+ Medium/High Uncertainty (no context):
Scegli la risposta che reputi piu

corretta.

corretta. Se credi che nessuna sia
corretta, scegli comunque quella che
reputi piu plausibile. Restituisci
solo A o B.

WEBGPT. The prompt is in English and asks the model
to determine which answer is more useful:

You are given a question and
two answers, A and B. Your
task is to decide which answer
is overall more useful. Read
the question and both answers
carefully. Compare them based
on how well their claims are
supported, how relevant they
are to the question, how much
unsupported or
content they include, and

irrelevant

how coherent and well-written
they are. Weigh all these
factors and respond with A or

WINNING ARGUMENTS.
judge persuasiveness:

B, depending on which answer
is better. Do not explain your
choice. Output only A or B.

Question: [Q]
A) [Answer 1]
B) [Answer 2]
Answer:

You are a Persuasion Detector,
your goal is to understand
if a message 1is more or
less persuasive than another,
meaning that it has more or
less potential of changing
someone’s opinion. You will
be prompted with 2 messages
and you have to respond with
ONLY "Message 1" or "Message
2" based on which message you
think is more persuasive.

—- Message 1: —-
[Message 1]

—- Message 2: —-
[Message 2]

Answer:

The prompt asks the model to
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