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Abstract
Language is fundamental to human cooperation, facilitating not only the exchange of information but also the coordination of
actions through shared interpretations of situational contexts. This study explores whether the Generative Agent-Based Model
(GABM) Concordia can effectively model Theory of Mind (ToM) within simulated real-world environments. Specifically, we
assess whether this framework successfully simulates ToM abilities and whether GPT-4 can perform tasks by making genuine
inferences from social context, rather than relying on linguistic memorization.

Our findings reveal a critical limitation: GPT-4 frequently fails to select actions based on belief attribution, suggesting
that apparent ToM-like abilities observed in previous studies may stem from shallow statistical associations rather than true
reasoning. Additionally, the model struggles to generate coherent causal effects from agent actions, exposing difficulties in
processing complex social interactions. These results challenge current statements about emergent ToM-like capabilities in
LLMs and highlight the need for more rigorous, action-based evaluation frameworks.
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1. Introduction
Language constitutes a fundamental aspect of human co-
operative activity, serving not only to describe or assert
aspects of a situation but also to actively shape and cre-
ate situations. Its principal function is communication,
which is inherently an interactive process. Through com-
munication, individuals engage in coordinated actions,
relying on shared interpretations of their context to align
their behaviors and objectives [1].

A notable example is the conversation for action,
a structured interaction in which one party (Speaker
A) issues a request to another party (Speaker B). This
request is understood by both parties as defining spe-
cific conditions of satisfaction that outline a prospective
course of action for B. Following the initial request, B may
respond by accepting (thereby committing to fulfilling
the conditions), declining (terminating the conversation),
or proposing a counter-offer with modified conditions.
Each of these responses opens the possibility for further
continuations; for instance, after a counter-offer, A may
choose to accept, withdraw the request, or propose an
alternative counter-offer in return[2].

However, all the possibilities available to B are con-
strained by a specific interpretation of A’s utterance. To
generate actions that are coherent within a given sce-
nario, agents engaged in communication must accurately
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interpret natural language, often relying on inferential
processes [3, 4, 5, 6] or mentalizing abilities to under-
stand others’ beliefs, intentions, and access to sentence
meaning. This implies that B has a finite set of possible
interpretations of A’s utterance, and that each interpreta-
tion is associated with a potentially infinite set of possible
actions. Thus, different actions may arise depending on
how the same utterance is understood.

One reason for this variability is that speakers do not
always convey their intended meaning literally. Rather,
listeners often need to infer the communicative intent
by drawing connections between linguistic meaning and
extralinguistic cues, such as the situational context, con-
ventional usage, and past experience.

Let us hypothesize that speaker A’s utterance is a sen-
tence like Can you open the window? and that A wants
to express an indirect speech act (ISA; [7]). Only once
B accesses A’s intended meaning can B consider the ap-
propriate set of possible actions to perform. The same
principle applies to an utterance like It is cold here, which
is literally a simple statement about temperature, but
can easily be interpreted as an indirect request to turn
on the heater. To access the intended meaning, B must
use mentalizing abilities to connect the linguistic expres-
sion with the situational context (e.g., knowing that a
heater is available and that A usually prefers it to be on,
etc.). Clearly, the set of actions available to B changes
depending on how the utterance is interpreted.

The factor that determines which interpretation is fa-
vored by the listener is the accurate inference of the
speaker’s beliefs and intentions at the moment the utter-
ance is produced. In other words, they require a Theory
of Mind (ToM) and the capacity for “mentalizing”, that
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is the ability to reason about others’ mental states, to
effectively link language with actions within a given sit-
uational context. A crucial aspect of the ToM involved
in communication are second-order beliefs, express-
ing an agent’s mental states about the content of the
other agent’s mental states (e.g., John believes that Marks
believes that q). Addressing the formalization and commu-
nication of intentions thus necessitates an understanding
of language as a form of communicative action. This
approach inherently entails the consideration of extralin-
guistic factors, as demonstrated in studies on multimodal
communication [8], and requires more sophisticated mod-
els of situational contexts to comprehensively capture
the interplay between language use and interpretation.

Traditionally, the evaluation of Large Language models
(LLMs) has largely overlooked the relationship between
language and action, instead focusing primarily on the
communicative context and dialogue. This omission is,
in part, due to the inherent challenges associated with
assessing the agentive aspect of language and its connec-
tion to actions.

This study proposes the use of the Generative Agent-
Based Model (GABM) Concordia [9] to embed utter-
ances and narratives within a situational context. The
goal is to determine whether reproducing such complex
scenarios – closely resembling real-world environments
– can facilitate the discrimination between intended and
literal meanings. Our primary research objective is to
assess Theory of Mind (ToM) abilities, operationalized in
this experiment as the capacity to infer intended meaning
based on extralinguistic factors.

Rather than directly prompting the model to interpret
the meaning of an utterance, we ask it to identify the most
probable action that the listener would choose, given
specific preconditions. This approach is justified by the
assumption that each interpretation of an utterance is
linked to a set of possible actions.

Our experiment takes into account the overlap be-
tween literal and non-literal meanings and the inference
processes required for the listener to comprehend the
intended meaning of an utterance. In our stimuli, we
incorporate utterances that allow for both direct and in-
direct interpretations. Thus, different actions may arise
depending on how the same utterance is understood.

To control for conventional utterance-action associa-
tions, we adapt the False-Belief task [10] into a novel ex-
perimental format. By evaluating action selection rather
than meaning comprehension directly, we minimize con-
cerns that the model may have been exposed to the in-
tended meanings during training. Moreover, our task
introduces two layers of complexity: first, the model
must infer the correct meaning under a false-belief con-
dition; second, it must map that inferred meaning to an
appropriate action.

This approach offers several advantages. Following

Kim et al. [11], we adhere to the two key criteria for a
ToM task outlined by Quesque and Rossetti [12]: non-
merging and mentalizing.

The non-merging criterion requires that evaluation
tasks ensure a clear distinction between an agent’s own
mental state and that of others. This distinction is often
absent in many LLM evaluations, as these models typi-
cally process the entire conversation as input, granting
them “omniscient knowledge”. Consequently, it becomes
challenging to determine whether a model’s response
reflects a character’s belief or results from its compre-
hensive access to the conversation history. In contrast,
our approach explicitly separates the mental states of
characters and ensures that their actions are determined
solely by their individual knowledge and intentions.

The mentalizing criterion stipulates that lower-level
cognitive processes should not account for successful per-
formance on ToM tasks. If a simpler explanation suffices,
it should be preferred over a more complex one when in-
terpreting results. In our framework, we introduce a clear
distinction: the speaker’s responses and actions can be
directly inferred from world-state correlations, whereas
the listener’s responses and actions necessitate a more
intricate mentalizing process. This process requires rea-
soning about language, context, intentions, beliefs, and
desires. To further support this distinction, we present
multiple versions of the same narrative, systematically
altering agents’ knowledge to encourage diverse inter-
pretations.

Our results reveal a critical limitation: Modeling situa-
tional context through real-world simulations is insuffi-
cient to elicit ToM-like abilities in the model. Specifically,
GPT-4 frequently selects actions without appropri-
ately interpreting utterances and the belief context,
demonstrating a clear divergence from the ToM ca-
pabilities observed in humans1.

2. Related Work

2.1. Generative Agent-Based Models
Generative Agent-Based Models (GABMs) represent a
significant departure from traditional agent-based mod-
els, which have typically been employed at a relatively
high level of abstraction. Moreover, the application of
traditional models has been largely confined to specific
domains, such as empirical social research [13], market
simulations [14], and computational sociology [15]. By
contrast, GABMs [16, 17, 18] enable more precise simula-
tion of behaviors across diverse contexts, leveraging the
extensive knowledge embedded in LLMs. These agents
not only have a more sophisticated array of cognitive

1Code and dataset available on GitHub: https://github.com/
agneselombardi/Concordia_ToM
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functions for adaptive decision-making but also engage
in natural language communication with one another,
further enriching their interactive capabilities.

2.2. Theory of Mind Simulation with
Agents

Theory of Mind (ToM), defined as the ability to infer the
beliefs and intentions of others [19], has been extensively
studied in the context of LLMs to assess their capacity
for handling complex tasks that require ToM reasoning.
A variety of text-based benchmarks, often inspired by
established psycholinguistic tests such as the Sally-Anne
test [20], have been developed to evaluate this ability.
While some findings suggest that LLMs demonstrate re-
markable performance on ToM-related tasks [21], other
studies highlight significant challenges faced by these
models in making complex ToM inferences [22]. Conse-
quently, the debate surrounding the extent of LLMs’ ToM
capabilities remains open.

Previous works have formalized ToM as agents’ knowl-
edge in various contexts, particularly to enhance collabo-
ration in multi-agent reinforcement learning settings [23]
and to improve the cooperative behaviors of LLM-based
agents through explicit belief modeling [24]. However,
these experiments are predominantly conducted in sim-
plified environments, such as the box game task, which
differ significantly from the complexities of real-world
social scenarios. On the other hand, previous attempts to
model ToM and social interactions have primarily relied
on simplified ABMs to simulate developmental settings
[25].

To the best of our knowledge, our study represents the
first attempt to utilize a Generative Agent-Based Model
(GABM) to explore:

1. whether LLMs exhibit ToM-like abilities in real-
life scenarios and simulations involving prag-
matic interpretation, like with ISA.

2. if we can effectively isolate mentalizing from
other variables, such as the memorization of lin-
guistic context [26] and better assess whether a
model truly demonstrates ToM capabilities rather
than relying on surface-level statistical patterns.

3. whether prompting LLMs with GABM settings
leads to more aligned and contextually appropri-
ate outputs.

4. whether adding explicit agents’ second-order be-
liefs and contextual information improves the
model’s capacity to perform ToM tasks.

3. Concordia
In Concordia [9], both the model of the environment and
the model of individual behaviors are generative. The

model responsible for the generation of the environment
is called Game Master (GM).2

Figure 1 illustrates the structure of the simulation in
Concordia. The GM functions as an intermediary be-
tween the agents and the environmental dynamics re-
sulting from their actions. Specifically, the GM receives
the agents’ actions and translates them into correspond-
ing observations, reflecting the environmental effects of
those actions. Meanwhile, the agents formulate and exe-
cute action strategies informed by their memory and the
observations provided by the GM. These observations are
subsequently updated to align with changes occurring
within the environment. Observations, actions and event
statements are all English strings. The GM is also respon-
sible for maintaining and updating grounded variables,
advancing the clock and running the episode loop.

In our simulation, agent actions are determined by
answering a Multiple-Choice Question Answer (MCQA).
The agents’ memories encompass all relevant background
information necessary for action selection. To enhance
coherence, we incorporate a component termed Direct
Effect Externality following the environment update. This
component determines whether the selected actions af-
fect one or more agents and specifies the resulting effects.
This serves as a verification mechanism to ensure that
the produced effects on the other player are coherent
with the selected action and with the inferred beliefs and
desires (that are explicitly codified in the GM memory).

4. Simulation
We generated a total of 200 ToM simulations, grouped
into 5 tasks. Each simulation involves two distinct char-
acters, accompanied by a sequence of observations for
each of them. The character memory is individually con-
structed by randomizing the Big Five personality traits
[27].

The simulation concludes with the final utterance from
one of the two characters, which can be interpreted liter-
ally or non-literally. This final utterance is constructed to
incorporate various pragmatic phenomena that require
the use of ToM. Specifically, the utterance can include
four types of Indirect Speech Acts (Indirect Requests,
Indirect Suggestions, Indirect Declinations, and Indirect
Threats) and three forms of Verbal Irony (Sarcasm, Hy-
perbole, and Rhetorical Questions).3

In each simulation, there is shared information avail-
able to both characters as well as character-specific
memory, including their goals, locations, and first- and

2The name and the approach reflect the game Dungeons and Drag-
ons, where the Game Master is the player that has the role of
storytellling.

3All stimuli used in this study are manually constructed, with the
exception of a subset of indirect requests, which are sourced from
[28].



Figure 1: The Game Master mediates between agents and the environment, translating agent actions into environmental
observations, while agents adapt their actions based on memory and updated observations.

second-order beliefs (see Figure 2). We manipulate the
agents’ knowledge in a manner analogous to a False-
Belief task4. Indeed, the specific memory of the agents
is manipulated to evaluate whether the action (response)
of the listener agent depends on accurately inferring
the beliefs of the other speaker agent, in alignment with
ToM. This is achieved by both withholding explicit infor-
mation about the other agent’s beliefs and providing it
to the character.

The distinct design of each task controls for the agent’s
beliefs and knowledge regarding the other agent’s beliefs.
Tasks 1, 2, and 3, take into account only agent’s first-
order beliefs, whereas Tasks 4 and 5 involve second-order
beliefs (Figure 3).

In total, there are 8 stimuli for each linguistic phe-
nomenon, resulting in 40 stimuli for each task. Ulti-
mately, the objective is to assess whether the selected
action by the listener aligns not only with the agent’s
own intentions and beliefs but also with the resulting
consequences in the environment and their impact on
the other agent. The generated events are designed to
ensure that they account for the beliefs and intentions of
both agents.

4The False-Belief task is a widely used method to investigate ToM
[29]. It enables a clear distinction between an agent’s true belief
and their awareness of another individual’s differing (false) belief.

4.1. Stimuli
Since each simulation replicates a false-belief pattern by
introducing an obstacle to the indirect interpretation of
the final utterance and manipulating agents’ awareness
of this obstacle, we designed 5 versions of the simulation
(Figure 3). In these tasks, i.) the agents’ knowledge of
the obstacle is systematically varied through the informa-
tion stored in their specific memory, and ii.) knowledge
variation determines whether the speaker’s sentence is
interpreted literally or not, iii.) which in turn prompts a
certain action by the listener. This allows us to control
whether the action produced by the listener is con-
sistent with the most likely interpretation of the
speaker’s sentence, given the agents’ knowledge in
the scenario. Thus, both interpretation and action are
contingent upon the ability to infer the beliefs and desires
of the other agent. As illustrated in Figure 3, given a test
item represented by the sentence 𝑆: Can you open the
window?, we have the following tasks:

Task 1 – the speaker is unaware of the obsta-
cle (The handle is broken), while the listener
is aware of it. The listener is expected to inter-
pret S with the non-literal meaning (i.e., indirect
request), and thus the most likely action would
be to inform the speaker that the window cannot
be opened.5

5The intended meaning here is I am asking you to open the window,



Figure 2: An example of the agents’ memory and the type
of observation, where the stimulus reproduces an Indirect
Request.

Task 2 – The agents’ beliefs are reversed com-
pared to those in Task 1.6 In this scenario, the
default interpretation is the non-literal one, but
the listener is expected to attempt to open the
window based on its own belief that the window
can be opened.
Task 3 – Both agents are aware of the obstacle
(The handle is broken), but there is no explicit
knowledge of the other agent’s belief. The
expected listener’s action is to inform the speaker
that the window cannot be opened, like in Task
1. This scenario becomes particularly informa-
tive when compared to Task 5 below, where both
agents are explicitly provided with second-order

reflecting the speaker’s desire (D: to open the window) and belief
(B: the window is not broken). However, the listener knows that
the window handle is broken and, therefore, that the window can-
not be opened. Therefore, the listener holds a different belief B1
from that of the speaker. If the listener lacks knowledge about the
speaker’s beliefs and desires, the interpretation of S may default to
a non-literal meaning. This phenomenon aligns with findings from
psycholinguistic experiments, where default interpretations often
prevail when they are more conventionalized than the literal ones
[30, 31].

6The listener lacks knowledge of the obstacle and thus holds belief
B, while the speaker holds belief B1 (cf. previous footnote).

beliefs. Even in agent-based models where agents
acquire information about the situation and con-
text, it is essential to possess knowledge of the
other agent’s beliefs in order to select actions that
are coherent with the situational context.

• Task 4 and Task 5 – They are extended ver-
sions of Task 1 and Task 3, respectively, in-
corporating second-order beliefs. In Task 5,
the interpretation of S is expected to be literal:
Since both agents are aware that the handle is
broken, the intended meaning of S should be I
want to know if the window can be opened despite
the broken handle.

This manipulation of character knowledge allows us
to investigate whether and how the interpretation of an
utterance varies depending on the belief states of the
speaker and the listener. In the first three tasks, the
model is provided only with character-specific knowl-
edge, simulating real-world conversational dynamics in
which speakers must infer others’ mental states based
on context. Here, the listener interprets the utterance
based solely on their own knowledge, and any correct or
incorrect understanding of the intended meaning arises
from inferences about the speaker’s beliefs. In contrast,
Tasks 4 and 5 introduce explicit representations of
others’ beliefs in the form of second-order beliefs
(e.g., Mark knows that Kyle knows that the window is bro-
ken). In these tasks, the listener has access not only to
their own knowledge but also to the knowledge state
of the speaker. Consequently, action selection depends
on i.) the model’s capacity to reason over second-order
beliefs and ii.) its integration of this information with
its own knowledge. This setup allows us to distinguish
between first-order and second-order ToM capabilities
in model behavior.

5. Experiments
The first phase of our experiment is formulated as a
Multi-Choice Question Answering (MCQA) problem, in
which the model is provided with an agent’s memories
and observations, followed by a question regarding the
agent’s likely next action, along with four possible an-
swer choices (see Figure 6, Appendix A.1). Concordia
performs a separate API call for each agent, ensuring that
it generates an independent response. The four answer
choices correspond to the possible responses derived
from different simulation scenarios (see Figure 2). At
the time of the experiments, Concordia had not been
adapted for open-source models yet. Therefore, we opted
for GPT-4o-mini,7 which has demonstrated state-of-the-
art performances across a wide range of ToM tasks.

7Prompted 22 November 2024



Figure 3: Adjustment of agents’ knowledge for the same stimulus across different task designs.Tasks 4 and 5 involve second-
order beliefs. The attempted action of the listener agent is determined by the interpretation of the final utterance, which may
be understood either literally or non-literally. The action that aligns exclusively with the literal interpretation is highlighted in
yellow.

In the second phase, the GM processes all actions per-
formed by the agents, along with a summary of each
agent’s situational context. This information is used to
prompt the model using a Chain of Thought approach
[32]. First, the model generates an event statement that
updates the environment to reflect the consequences of
the performed action – effectively logging what has oc-
curred (Figure 7, Appendix A.2). Then, the model evalu-
ates whether the action has an impact on the agents and
determines the nature of this impact as part of the Direct
Effect Externality component. If the event directly affects
an agent, both known and unknown effects are gener-
ated. Agents’ intentions and actions are integrated by the
GM within the prompting phase that queries for effects,
requiring the model to consider multiple perspectives
simultaneously to generate the appropriate outcomes
(Figure 8, Appendix A.2).8

5.1. Evaluation
To evaluate whether the attempted actions of each agent
align with their intentions in the MCQA task, we ex-
tracted the generated text for each agent from the HTML

8All memories, prompts, and relevant information are systemati-
cally stored in HTML files for documentation and analysis. HTML
versions are accessible through the GitHub link.

files and we compared it with the expected response for
that task.

For the evaluation of generated text from the Direct
Effect Externality component, we extracted relevant in-
formation and additionally prompt GPT-4o-mini to as-
sess the coherence of the effect with the agent’s action
and scenario. This process yields the following evalu-
ation template (see Appendix A.2) for each agent: Sce-
nario (summary of agent’s observation and belief)
+ attempted action of agent X + Known and/or Un-
known effect + coherence rating (on a scale from 1 to
5, generated by the model).9 This structured approach en-
sures a systematic assessment of how well the predicted
effects align with the agent’s intended actions within the
given scenario.

The use of “LLM-as-a-Judge”, where LLMs are em-
ployed as evaluators for complex tasks, has been shown
to be a reliable assessment method [33]. Thus, we em-
ploy this method to assess the model’s ability to connect
actions to social context and to cross-check the coher-
ence it attributes to the effects it generates. Specifically,
in the Direct Effect Externality component, a Chain-of-

9When the model determines that there are no direct effects on the
agents, it must assign a coherence rating of 0. This ensures that the
evaluation framework accurately distinguishes between scenarios
where actions produce meaningful consequences and those where
no direct impact occurs.



Thought (CoT) is generated based on the event statement
produced by the GM after the attempted action – this
statement serves as a summary of the effects that the ac-
tion produces. However, in our evaluation template, we
compare coherence against the initial scenario summary
that we originally provided to the model. This way, we
determine whether, at the end of the cycle, the effect on
the agent remains truly coherent with the given scenario
and the agent’s beliefs, rather than merely aligning with
additional effects generated by the model itself.

Following this automated evaluation, two different
expert annotators checked the assigned ratings to verify
their accuracy and to ensure that the consequences are
meaningfully related to the corresponding actions and
scenarios. Meanwhile, the assessment of ToM capabilities
is derived from the MCQA task.

6. Results and Discussion

6.1. Actions and Theory of Mind
In the initial phase of our experiment, we aim to utilize
GPT-4o-mini to replicate ToM-like abilities while simul-
taneously assessing its capacity to perform ToM tasks
within a simulated real-life scenario. Our objective is to
determine whether this approach enables an independent
evaluation of ToM capabilities, separate from the influ-
ence of linguistic context. Then, we seek to determine
whether incorporating explicit representations of agents’
beliefs enhances the model’s performance on ToM tasks.
Additionally, we aim to explore potential differences in
the model’s handling of first-order versus second-order
ToM beliefs.

Figure 4 illustrates the percentage of correctly selected
actions for each task and linguistic phenomenon. The
consistently low accuracy observed across tasks and lin-
guistic phenomena indicates that the model struggles to
select context-appropriate actions, and by extension, to
derive the correct interpretation of utterances through
ToM-like reasoning. This finding is particularly notewor-
thy when considered within the broader context of recent
ToM-related studies, many of which—especially those
focusing on OpenAI models—have suggested a more op-
timistic picture of such capabilities [21].

No clear pattern emerges across tasks, nor is there a sig-
nificant difference between first-order and second-order
belief tasks. This lack of systematic variation suggests
that the model does not exhibit ToM-like abilities, as its
responses do not consistently reflect any process similar
to belief attribution or true mental inferencing. There-
fore, the GABM is not able to use either first- or
second-order beliefs – despite the fact that these
have been explicitly given to it – to interpret the
speaker’s sentence consistently with the knowledge

setting in the scenarios.

6.2. Causal-Effect Coherence
In this analysis, we aim to investigate whether the GABM
setting leads to more contextually aligned and appropri-
ate outputs. We compared the effects generated by the
model in response to agent actions with both the prede-
fined scenario and the beliefs assigned to the agents. We
then assessed whether the model itself considers these
effects coherent by assigning a coherence rating on a
scale from 1 to 5. Following this automated evaluation,
we manually reviewed the model’s ratings to assess their
accuracy.

As illustrated in Figure 5, the model assigns notably
low coherence ratings to effects that it itself generates,
with a maximum average rating of 2.11 on a scale from
1 to 5. The observed discrepancy between the selected
action and the generated consequences highlights the
model’s difficulty in integrating situational context with
utterance interpretation in a coherent manner. The CoT
reasoning often reflects limited contextual awareness,
focusing primarily on short-range dependencies rather
than engaging in the broader reasoning processes neces-
sary to produce coherent cause-effect relationships. To
better illustrate this contrast, we included the model’s
self-evaluation of its outputs and compared these judg-
ments with those of human annotators. This comparison
underscores a critical distinction: during generation (i.e.,
in the CoT), the model is required to actively infer and
reason about the situational context in order to produce a
logically coherent narrative. However, when evaluating
its own output, the model can rely on the full textual
context and potentially draw on patterns and examples
present in its training data. Interestingly, in this evalua-
tive mode, the model’s coherence judgments align more
closely with human assessments—likely because the task
resembles familiar forms of pattern recognition, rather
than the more demanding process of causal reasoning
required during generation.

7. Conclusion
Our objective was to utilize the Generative Agent-Based
Model Concordia to reframe ToM tasks and investigate
whether mentalizing abilities could be isolated from other
confounding variables typically present in prompting-
based evaluations. Specifically, we aimed to reproduce a
standard False-Belief task within a complex social simula-
tion. To achieve this, we carefully designed stimuli involv-
ing uncommon social situations to determine whether
modeling a rich situational context and assigning explic-
itly to the model first- and second-order beliefs would
aid it in making the correct inferences and producing an



Figure 4: Percentage of correct answers for each task. Orange bars represent the listener, whose correct response varies
depending on the scenario.
IR: Indirect Requests; IS: Indirect Suggestions; ID: Indirect Declinations; IR-Os: Indirect Requests extracted from Trott and
Bergen [28]; IT: Indirect Threats; VI-IH: Verbal Irony, Indirect Hyperbole; VI-IQ: Verbal Irony, Rhetorical Questions; VI-IS:
Verbal Irony, Sarcasm

action consistent with the knowledge scenario.
The results presented in Section 6.1 underscore a grow-

ing concern in the Theory of Mind (ToM) research com-
munity: The challenge of designing tasks that ef-
fectively isolate ToM-like abilities in LLM from
confounding variables. Our findings raise important
questions about the mechanisms driving ToM-like per-
formance in state-of-the-art LLMs and the true nature
of their so-called emergent abilities. For example, while

the False-Belief task remains a widely used and valu-
able benchmark for testing ToM, it is also a well-known
paradigm likely to appear in post-training data. This
raises legitimate concerns about whether models are gen-
uinely reasoning about beliefs or simply learning how
to solve familiar tasks through exposure. Furthermore,
although the False-Belief task is well-established in hu-
man cognitive testing, the conditions under which it
is administered differ significantly from those we can



Figure 5: Ratings are assigned by prompting the model to evaluate the coherence of the generated effects on agents in relation
to the given context and attempted actions. When no effect on the agents is present, the model must assign a rating of 0 –
the probability of such cases is displayed in the box at the top right. For all other instances where an effect is generated, the
assigned coherence ratings for both the speaker and the listener must fall within the range of 1 to 5.

replicate in computational models. While we maintain
that it remains a useful tool for evaluating ToM-like ca-
pabilities, we argue that it should be supplemented
with additional constraints and more indirect test-
ing methods – such as connecting utterance inter-
pretation with action selection, as we do in our work
– rather than relying solely on metalinguistic judgments.
Our results lend support to the memorization hypothe-
sis, suggesting that current LLMs may not truly reason
about propositional attitudes but instead exploit learned
statistical patterns present in their training data.

Additionally, the model does not consistently select
coherent effects in response to actions, indicating that we
are still far from developing frameworks that accurately
model complex social scenarios. However, employing
these agent-based simulations as evaluation methods rep-
resents a promising research direction. It is reasonable
to conclude that LLMs remain far from producing fully
aligned and contextually coherent outputs in tasks requir-
ing deep social reasoning. We conclude that to isolate
“mentalizing” processes, we should rely on more complex
scenarios, focusing on assessing functional ToM rather
than merely literal ToM [34].

8. Limitations
This study has several limitations. First, it relies heav-
ily on the model’s self-evaluation, introducing a risk of
circular reasoning.

Human evaluation was limited to two annotators, re-
stricting claims about inter-annotator reliability. Addi-
tionally, we used pre-existing components of Concordia
rather than developing tools specifically designed for
ToM assessment. Our analysis focused solely on GPT-
4o-mini, limiting generalizability across models. Finally,
we evaluated outputs only, without investigating the in-
ternal mechanisms underlying the model’s ToM-related
reasoning.
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A. Appendix

A.1. Simulation display
At the conclusion of the simulation, all relevant informa-
tion is collected within the Game Master (GM), allowing
us to retrieve segments of the Chain of Thought (CoT)
used by the model to determine both the event statement
and its effects on the agents. While this framework offers
a range of possibilities for modeling social situations, we
specifically chose to replicate simple false-belief tasks
using Concordia to evaluate whether mentalizing pro-
cesses could be effectively isolated and to assess whether
enriching the social context enhances the emergence of
ToM-like abilities.

To achieve this, we implemented two distinct evalua-
tion tasks. First, we employed a Multiple-Choice Ques-
tion Answering (MCQA) task, in which the model had to
select an agent’s actions based on their desires and beliefs
(Figure 6. Subsequently, we shifted our focus to assessing
the general coherence of the model’s generated actions

Figure 6: API call to LLM reproducing a Multi-Choice Ques-
tion Answering task

within the social context. This involved evaluating the
model’s ability to utilize CoT reasoning to produce mean-
ingful event statements and generate coherent effects of
events on agents.

In the GABM setting, the model must retrieve previous
information to determine the correct effect, yet in some
cases, it appears to rely only on the most recent portion
of text. This issue is evident in Figure 8, where, despite
the CoT explicitly containing the player’s belief that the
agent notices his sister, this information is lost during the
prior CoT steps that summarize observations and actions
into an event statement (Figure 7). The event statement
represents a generalized effect of an agent’s action in the
environment and is sent back to agents as an observation.
It serves as the basis for evaluating whether an action
has an effect on the agents themselves.

Due to this loss of information, the generated effect can
sometimes become entirely incoherent with the initial
context. This misalignment is reflected in the model’s
own coherence ratings, which capture the inconsistency
between the intended effect and the final output.

Figure 7 presents an example of an event statement
generated based on the attempted action of one of the
agents. Figure 8 illustrates the subsequent process of
determining the effects of the action on the agent, con-
sidering both the action itself and the event statement.
For clarity, we chose to highlight two of the most contro-
versial examples in this discussion.
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Figure 7: After the GM has received the agent attempted action, it generates a Chain of Thought to determine which events
the action caused.

Figure 8: How the Direct Effect Externality component results appear after they have been stored in HTML format

A.2. Evaluation Details
To evaluate the coherence of model-generated text in
relation to the scenario and the agents’ attempted ac-
tions, we employed the following assessment template.
This template was also used to verify the model’s ratings
and determine their alignment with our own judgments.
Template is based on that created by Wu et al. [35]:

We request your evaluation of the AI
model’s response in relation to the given
scenario. Specifically, consider the sce-
nario involving two agents and their
beliefs, assessing whether the model-
generated effects align coherently with
the agents’ actions and context.

Evaluate the response based on the fol-
lowing criteria:

Social Understanding – Does the model
grasp the social dynamics and pragmatic
nuances of the scenario?
Appropriateness – Is the response contex-
tually relevant and suitable for the sce-
nario?
Insightfulness – Does the answer demon-
strate a deep understanding of intentions,
implicature, deceit, irony, sarcasm, humor,
metaphor, etc.?
Completeness – How well does the re-
sponse capture the essential elements of
the scenario?

Agentivity – Is the model’s response co-
herent with the agents’ attempted ac-
tions?

Scoring: Assign a score from 1 to 5 for
each category. Compute a final rating
based on these scores. If no effect is pro-
vided, assign 0. Output only a single nu-
meric value representing the final rating
(1–5).
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