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Abstract
This paper explores the employment of LLMs, specifically of Mistral-Nemo, in the semi-automatic population of the Ancient
Greek WordNet synsets. Several approaches are investigated: zero-shot, few-shots, and fine-tuning. The results are compared
against an English baseline. Zero-shot approach yields the highest accuracy, while fine-tuning leads to the highest number of
potential synonyms. Our analysis also reveals that polysemy and PoS play a role in the model’s performance, as the highest
scores are registered for polysemous words and for verbs and nouns. The results are encouraging for the application of such
approaches in a human-in-the-loop scenario, since human validation still proves crucial in ensuring the accuracy of the
results.
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1. Introduction
In this paper, we explore the application of Large Lan-
guage Models (LLMs) for populating the synsets of the
Ancient Greek WordNet (AGWN) and assessing the ex-
tent to which these models can support such a task.

WordNet is a lexical resource that organizes word
meanings by groups of quasi-synonymous words con-
nected to each other in a network structure ([1]). The
first WordNet was developed for English at Princeton
University by George Miller and Christiane Fellbaum
([2], [3], [4]). Originally developed within a project in
psycholinguistics, it gradually evolved into a tool for
computational lexical semantics. The development of
such semantic networks was subsequently extended to
languages beyond English, beginning with modern lan-
guages (e.g., [5]) and later including ancient ones as well,
such as Latin, Ancient Greek, Sanskrit and Old English
([6], [7], [8], [9], [10]).
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The building blocks of WordNets are synsets, that is,
groups of cognitive synonyms, each associated with a
short definition and an ID-number ([1]). WordNets are
designed to represent both synonymy and polysemy, via
assignment to the same synset or to multiple synsets,
respectively. For example, the Ancient Greek nouns
apaugasmós, aíglē, kataúgasma, phōtē ŕ, apaúgasma, pe-
riphéggeia, augasmós, bolē ́, kiéllē1 all belong to the synset
n#03874115 ‘the quality of being bright and sending out
rays of light’, indicating that they are at least partially
synonyms2. In addition, lemmas can be assigned to multi-
ple synsets, which indicates polysemy. This is the case for
aíglē, which also appears in the synsets n#03874461 ‘an
appearance of reflected light’ and n#03690420 ‘brilliant
radiant beauty: “the glory of the sunrise”’. Furthermore,
synsets are connected via semantic relations such as hy-
ponymy, hyperonymy, and meronymy, whereas lexemes
are related to one another via lexical relations, primarily
derivation.

Drawing from a previous collaboration with the Uni-
versity of Pavia ([13]), the first version of the AGWN
was developed in 2014 as the result of an international
collaboration between the Institute of Computational Lin-
guistics “Antonio Zampolli” (Pisa), the Perseus Project,
the Open Philology Project, and the Alpheios Project. It

1Note that in the experiment both the inputs and the outputs of the
model were written in the Greek alphabet. In this paper, however,
all Ancient Greek lemmas are transliterated and provided with
translations supplied by the LSJ lexicon [11].

2Synsets do not group together only ‘absolute synonyms’, i.e., words
that are interchangeable in all possible contexts, but also words that
are similar in meaning limited to certain contexts ([2]: 241, [12].)
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was initially constructed using digitized Greek-English
lexica from the Perseus Project, linking the Greek word
of each extracted bilingual pair to every synset in the
Princeton WordNet ([3]) in which the English member
of the pair appeared. This method, known as the ex-
pand method ([5]), has been commonly adopted in the
development of several modern WordNets ([14]), largely
due to the extensive richness and detail of the Prince-
ton WordNet. However, it presents challenges typical
of using English as a pivot language, as well as difficul-
ties specific to mapping concepts across culturally and
historically distant traditions. In the case of the AGWN,
synsets were also aligned with the Italian section of the
MultiWordNet ([15]), ItalWordNet ([16]), and with the
Latin WordNet ([6]). A subset of synsets was used to
evaluate the automatic extraction process and erroneous
alignments were removed by filtering out anachronistic
domains. This version of the AGWN included approx-
imately 35,000 lemmas—roughly 28% of the estimated
120,000 lemmas in the entire Ancient Greek lexicon. Cov-
erage was significantly higher for the Homeric lexicon
(69%), owing to the incorporation of Autenrieth’s Home-
ric Dictionary in the construction of the resource (see [7]
for details).

The work on the AGWN continues in the framework
of the PRIN project Linked WordNets for Ancient Indo-
European Languages, whose aim is to harmonize three
WordNets for Ancient Greek, Latin, and Sanskrit, and ex-
pand their coverage in terms of the number of annotated
words and populated synsets ([9], [17]).

While various methods have been proposed for the
automatic population of synsets, their outputs typically
still require substantial manual validation. For instance,
word embeddings have been employed to identify lexi-
cal relations absent from existing WordNets for Ancient
Greek ([18]), Sanskrit ([19]), and Latin ([20]; see [21] for
an overview). Given that fully manual synset population
is highly time-consuming, a further aim was later added
to the project Linked WordNets for Ancient Indo-European
Languages: the training and testing of LLMs for the auto-
matic population of synsets of ancient languages. These
models are intended to be integrated into the current
annotation platform to suggest potential synonyms to
annotators, who will then manually validate the LLM
generations.

The first experiment with LLMs, conducted on Latin
([21]), aimed to compare zero-shot, few-shot, and fine-
tuning approaches against an English baseline. Quantita-
tive analysis showed marked improvements from zero-
shot to fine-tuning approaches, with the latter outper-
forming the English baseline. Qualitative evaluation re-
vealed stronger performance with verbs and with lemmas
belonging to relatively well-populated synsets. While
the results were encouraging, they highlighted the need
for better performance across various parts of speech

and degrees of polysemy. These goals are pursued in the
present paper, which extends the experiment to Ancient
Greek.

The paper is organized as follows. In Section 2 we
describe our data and methodology, discussing the cre-
ation of the dataset (2.1), the zero-shot approach (2.2), the
few-shot approach (2.3), and the fine-tuning processes
performed using the LoRA technique (2.4). In Section 3
we report the results of the experiment, which are dis-
cussed from both a quantitative (3.1) and a qualitative
(3.2) perspective. Section 4 concludes the paper.

2. Data and Methodologies
The experiment 3 followed three distinct methodological
phases, namely zero-shot prompting, few-shot prompt-
ing, and fine-tuning. This progression was introduced to
evaluate the effectiveness of different approaches for the
given task and determine the advantages and disadvan-
tages of each strategy.

Furthermore, an English baseline was established to
validate the results of this study, in order to explore the
model’s responsiveness to this specific task and to exam-
ine how cross-linguistic differences might influence its
performance.

The pretrained model used in all stages of the experi-
ment is Mistral-NeMo4, a multilingual open source model
selected because of its balance between performance and
efficiency, which results optimal for fine-tuning.

2.1. Datasets
The testing data used in the experiment consists of two
datasets, one made up of (chiefly) monosemous lemmas
and the other of polysemous lemmas. This distinction
follows the work of [21], in which the distinction of the
two datasets was based on the number of lemmas associ-
ated to the synsets: the so-called polysemous dataset was
formed by well-populated synsets, each containing 15
mainly polysemous lemmas, while the so-called monose-
mous dataset was made up by less populated synsets
containing at least two monosemous lemmas. However,
in this work the datasets were manually crafted, since the
annotated data in the AGWN are too scarce to allow for
the same approach: lemmas possessing just one meaning
according to the LSJ lexicon ([11]) were collected in the
monosemous dataset, while lemmas associated to multi-
ple meanings constitute the polysemous dataset. Each of
the datasets is composed of 40 lemmas, equally divided

3The datasets, code, and data used for this experiment are provided
in a repository at https://github.com/unipv-larl/llms-ag.

4https://mistral.ai/news/mistral-nemo,
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407



among the four PoS types included inWordNets (10 verbs,
10 nouns, 10 adjectives, and 10 adverbs).

To validate the results against a benchmark, an English
baseline (EB) dataset was created. Considering that the
English baseline serves as a benchmark to highlight differ-
ences in performance between a high-resource modern
language such as English and Ancient Greek, a substan-
tial gap between the results for the two target languages
is to be expected. The English baseline dataset maintains
the distinction between “monosemous” and “polysemous”
sets, and its characteristics are the same as those of the
test dataset. Thus, the included lemmas have roughly
the same meanings as the Ancient Greek words, since
they consist of translations and are balanced for PoS.
During the translation of the Ancient Greek dataset into
English, particular care was taken to preserve the distinc-
tions between the datasets. Lemmas from the monosemy
dataset were translated using roughly monosemous En-
glish words, while those from the polysemy dataset were
rendered with mainly polysemous equivalents.

The fine-tuning dataset was created by extracting data
from back-translation dictionaries, based on the assump-
tion that such dictionaries provide, for any given entry
in a modern language, a list of Ancient Greek words that
can be used in context to translate that entry, that is,
contextual synonyms. An example of a back-translation
dictionary entry is offered below:

• Accusation (subs.): P. katēgoría, hē, katēgórēma,
tó, P. and V. aitía, hē, aitíama, tó, énklēma, tó, V.
epíklēma, tó ([22]).

Through a series of processing and cleaning operations,
a dictionary of Ancient Greek synonym sets was ex-
tracted from the English-Greek Dictionary ([22]) and the
Deutsch-Griechisches Wörterbuch ([23]), merging the
results obtained from each dictionary to avoid overlap.
It is important to note that the digital versions of these
back-translation dictionaries were obtained through OCR
(Optical Character Recognition), which - while generally
accurate for modern languages written in the Latin script
- yields sub-optimal results for Ancient Greek, often pro-
ducing incorrectly digitized data and, consequently, inex-
act outputs. To address this problem, a series of cleaning
operations was performed, from encoding normalization
to checking the lemmas against the entries of the Brill Dic-
tionary ([24]) to exclude incorrect or non-existent words.
Such cleaning procedures ensure that the assembled dic-
tionary only contains existing Ancient Greek words in
their lemmatized form and that each set of synonyms
exclusively features lemmas pertaining to the same PoS.
An example of the synonym sets resulting from the data
collection procedure is presented below:

• phrikō ́dēs (awe-inspiring): ouránios (heavenly),
theîos (divine), deinós (wondrous).

The resulting dataset in JSONL format was made up of
5,458 sets of synonyms with a mean number of 16 syn-
onyms each (minimum 1, maximum 315 for the lemma
peribállō (throw around)), thus divided across PoS: 2946
nouns (54%), 1372 verbs (25%), 955 adjectives (18%) and
185 adverbs (3%)5.

The aim of the experiment with Latin WordNet ([21])
was to explore the outcomes and benefits of automating
WordNet annotation by fine-tuning a model with data
extracted from the WordNet itself. The assumption was
that training a model on data of the same type and with
the same structure of the desired output might lead to
improved results, creating a virtuous feedback loop in
which WordNet data are directly used to generate new
data for WordNet population. Although AGWN does not
contain sufficient annotated data to provide a suitable
training dataset and to support the exact same approach
as [21], this work is based on the same assumption, since
the data that was collected for fine-tuning shares the
same structure and properties of the data in the WordNet,
as previously discussed.

2.2. Zero-Shot Approach
The first approach of the experiment is zero-shot (ZS)
learning. This strategy tests the generalization potential
and performance of models in tasks for which they were
not specifically trained, since “no demonstrations are
allowed, and the model is only given a natural language
instruction describing the task” ([25]: 7). Indeed, models
pre-trained on various and general datasets are usually
able to generalize across new tasks, thus saving resources
needed to create labeled data for additional training or
demonstrations ([26]).

Compared to other approaches, zero-shot learning
presents several drawbacks, including difficulty with
complex tasks and lower accuracy, as outputs may lack
precision or contextual relevance. Moreover, it is highly
sensitive to prompt framing, which plays a crucial role
in this setting ([27]).

As the first stage of the experiment, the zero-shot strat-
egy was applied for both the Ancient Greek dataset and
the English baseline. The prompts were tailored to each
language and followed the best practices of prompt en-
gineering, such as assigning a persona, specifying the
desired output format, and organizing assertions as a
bullet list ([28]; [29]). For the complete prompts, see A.1
and A.2.

2.3. Few-Shot Approach
In the few-shot (FS) setting, some examples demonstrat-
ing the expected output, its format, and style are given

5The data collected for fine-tuning will be imported in the AGWN,
to help with the automatic population of the resource.



to the model to enhance performance, helping it under-
stand the reasoning required for the new task ([25]). This
approach has been proven to generally outperform zero-
and one-shot learning ([25]; [30]), especially in structured
and complex tasks, such as synonym generation. Com-
pared to fine-tuning, this method proves cost-effective
because the weights of the model are left unchanged,
sparing a computationally intensive process, and only a
small set of labeled items is needed, which is convenient
in cases of scarcity of data ([27]: 24). However, this strat-
egy is strongly dependent on careful prompt engineering
and on suitable and verified examples. Therefore, par-
ticular attention is needed when designing the prompts
([31]: 3). As for prompt engineering best practices, per-
formance has been proven to increase the more similar
the examples are to testing data. The choice of examples
also seems to have a great effect on the output ([27]: 16).

To test this approach on the Ancient Greek dataset,
an ad-hoc prompt was created by maintaining the basic
structure of the zero-shot prompt and adding a set of
eight examples featuring the same structure of the desired
output. The examples are equally divided into roughly
monosemous and polysemous word sets and are balanced
for PoS, so that for each of the four PoS, two lemmas
are provided, that is, one monosemous, the other one
polysemous. The examples added to the few-shot prompt
are listed in A.3.

2.4. Fine-Tuning with LoRA
A recent trend with demonstrated advantages is to adapt
large-scale pre-trained language models to specific down-
stream tasks. Indeed, a first stage of generative pre-
training leads to gaining a greater world and language
knowledge and, consequently, to an improved perfor-
mance. Then, the following fine-tuning (FT) on domain-
specific labeled data updates the pre-trained parameters
with a new training cycle to adapt the model to the task
at hand. This combination of unsupervised pre-training
and supervised fine-tuning results in a semi-supervised
approach able to construct a universal representation,
which can be applied to a wide array of tasks ([32]: 2).

Although fine-tuning greatly enhances model per-
formance, it is very resource-intensive. Some strate-
gies were explored to mitigate this issue, such as LoRA
(Low-Rank Adaptation), which is a PEFT (Parameter-
Efficient Fine-Tuning) method that makes fine-tuning
more parameter- and compute-efficient by freezing the
pre-trained model’s parameters and adapting only a sub-
set of weight matrices. This method proves to be highly
efficient compared to traditional fine-tuning, especially
with regard to memory and storage ([33]: 5), meeting and
sometimes surpassing the baselines, without increases in
inference times ([33]).

The final step of the experiment involved fine-tuning

a task-specific model. This was achieved by fine-tuning
the quantized Mistral-NeMo model, which was loaded in
8-bit format to optimize computational efficiency, using
the previously described fine-tuning dataset on a GPU
node of an HPC cluster. LoRA was used to optimize fine-
tuning, setting the low-rank matrix dimension to 8 and
the scale factor lora_alpha to 16, with a dropout of 10%.
The dataset was split into training (80%) and validation
(20%), and the training was set for five epochs with a
learning rate of 1e-4. An early stopping mechanism with
a patience of one epoch was established to avoid overfit-
ting, and a parameter was set to save the model with the
lowest value of validation loss, which corresponded to
the output of the fourth epoch. The metrics calculated
during fine-tuning over the five epochs of training are
presented in Table 1.

Table 1
Fine-tuning metrics over the five epochs of training. For each
metric, the best value is highlighted in bold type.

1 2 3 4 5

Training loss 1,2943 1,4099 1,1478 1,2232 1,1855

Validation loss 1,4814 1,4366 1,4137 1,4087 1,4100

Training mean
token accuracy 0,6587 0,6262 0,6597 0,6720 0,7206

The overall loss trend is descending, even if gradually,
both in training and in validation, and the accuracy values
are increasing. Overall, themetrics show that the training
was conducted successfully and without overfitting.

3. Results and Discussion
The validation of the results took place in two steps. The
first step was to automatically lemmatize each word us-
ing greCy ([34]), so that even inflected forms generated
by the model are traced back to the corresponding lemma.
Notably, this pre-processing step is pointless in the case
of hallucinations or incorrect forms (for a more detailed
discussion, see 3.2.1 and 3.2.2). It is worth pointing out
that the lemmatization, while correct in most cases, was
not always impeccable (e.g., theoí (gods, masculine nom-
inative plural) > theoí (FS)).

After lemmatization, three human annotators6 vali-
dated the results, determining for each generated item if
it constituted a potential synonym of the input word. In

6The three annotators are all students of the MA program in Lin-
guistics at the University of Pavia with a BA Degree in Classics.



cases of disagreement between the annotators, the mat-
ter was resolved through discussion until an agreement
was reached. The inter-annotator agreement, measured
with Fleiss’ Kappa ([35]), reached a value of 0.71 on the
Ancient Greek data and 0.66 on the English data, both of
which fall under the label of good to substantial agree-
ment. For the purposes of this work, the concept of syn-
onymy is interpreted in a shallow and contextual sense,
consistent with the framework upon which the WordNet
architecture is based (see footnote 2). Thus, words whose
meaning is similar enough that they might be assigned
to the same synset are considered potential synonyms,
as in 1.

1 anankázō: rule, hold sway.
kratéō: force, compel.

The results are analyzed both from a quantitative and a
qualitative perspective, and the analysis is carried out by
comparing the different approaches employed, which are
bench-marked against the English baseline. Regarding
the quantitative data discussed in Section 3.1, the perfor-
mance of each of the approaches is evaluated through
the metrics of accuracy, similarity, number of generated
outputs, and potential synonyms.

3.1. Quantitative Analysis
The results of the quantitative analysis are shown in Ta-
ble 2, which displays the values of the metrics for each
of the approaches, both providing the overall scores and
distinguishing between the polysemous and the monose-
mous datasets.

Table 2
Metrics comparison (acc: accuracy, sim: similarity, n_gen:
number of generated outputs, p_syn: number of potential
synonyms). For each row, the best scores, excluding those of
the EB, are highlighted in bold type to facilitate comparison
across approaches for Ancient Greek synonym generation.

acc sim n_gen p_syn

O
ve

ra
ll

EB 90% .377 167 151
ZS 30% .261 116 34
FS 5% .099 169 9
FT 11% .077 403 43

Po
ly
se
m
y EB 98% .407 85 83

ZS 40% .296 63 24
FS 7% .066 61 4
FT 13% .113 288 38

M
on

os
em

y EB 83% .347 82 68
ZS 19% .226 53 10
FS 5% .132 108 5
FT 4% .041 115 5

As for the similarity metric, cosine similarity was com-
puted using pre-trained Word2vec embeddings based
on a skip-Gram model for both English7 and Ancient
Greek8. In a task such as synonym generation this met-
ric is useful in determining if the output might be a valid
synonym to the target word based on semantics and
distribution. However, one limitation is represented by
out-of-vocabulary (OOV) terms, meaning that in some
cases, for both English and Ancient Greek, the metric
fails to capture the actual similarity between the gener-
ated output and the input lemma, as one or both of the
two words are not contained in the embedding dictionary,
such as in 2.a and 2.b:

2.a gourmand: epicure. Similarity: 0.

2.b katasparássō (tear in pieces): katagnúō (break
in pieces). Similarity: 0.

While the issue of OOVs affects both English and An-
cient Greek, the latter is more severely impacted by this
problem due to the more limited size of the embedding
dictionary, thus the similarity values for Ancient Greek
tend to be underestimated compared to the English base-
line.

As shown in Table 2, the two datasets of the English
baseline score the highest values in accuracy, similarity,
total, and mean of potential synonyms. The results high-
light that the model reaches a high performance in the
task at hand, even in a zero-shot setting without task-
specific demonstrations or training. This result indicates
that the generalization potential of the model is quite
high for a high-resource language such as English.

As for the zero-shot approach, the first step of the
experiment shows a much lower performance compared
to the English baseline, across all metrics. Considering
that pre-trained models have much less data available for
Ancient Greek compared to modern languages such as
English, the drop in performance and in the number of
generations is to be expected.

Considering now the few-shot approach, the results
show an unexpected drop in performance compared to
the zero-shot strategy. Indeed, the instructions given in
the prompt apparently do not help the model, but rather
affect the outputs negatively. However, it is important to
point out that the number of generated outputs increases
compared to the zero-shot approach, reaching the same
value as the English baseline.

Finally, the results of the fine-tuned model register an
overall increase in performance compared to the few-
shot approach. Compared to zero-shot learning, this
approach scores lower accuracy and similarity, but reg-
isters a higher number of validated potential synonyms.

7https://code.google.com/archive/p/word2vec/.
8https://zenodo.org/records/8369516 [36].



This is because the number of generated outputs in-
creases greatly, surpassing even the English baseline,
which makes accuracy drop since only a portion of the
outputs are potential synonyms. While the zero-shot
approach is more accurate in output generations, fine-
tuning leads to a greater number of generated synonyms
and, in turn, of validated potential synonyms. This trade-
off might prove advantageous for automating population
with a human-in-the-loop approach, since on average a
higher number of potential synonyms is generated and
the human annotator can efficiently discard inappropri-
ate generations, as the average number of outputs for
each input word is moderate (around 5).

Our findings show that the results of the English base-
line greatly outperform those of the other approaches
across all metrics but the number of generations, which
is highest for the fine-tuned model. Considering the pro-
gression of the approaches adopted in the experiment,
one can note that the scores of accuracy and similarity
drop along every stage of the experiment, contrary to
the expectations discussed in Section 2.2-2.4, and to the
results of [21]. On the other hand, the number of gen-
erated outputs steadily increases with each stage of the
experiment. The differences in performance across the
stages of this experiment, when compared to the results
with Latin reported by Santoro et al., are likely due to the
language model employed: the model used for this study,
Mistral Nemo, is more recent and has a higher number
of parameters compared to Mistral 7B, which was used
in the study on Latin. The difference in performance
between the two models is also reflected in the EB, which
scored a much lower accuracy (around 29%, [21]: 4) in
Santoro et al.’s work than in the present study (around
90%). Mistral 7B performed poorly in the zero-shot set-
ting, but then registered a marked improvement in the
following stages of the experiment. Conversely, Mistral
Nemo demonstrated relatively strong performance from
the onset, while the few-shot setting scored much lower
results, and the fine-tuning led to an increase in potential
synonyms, but a decrease in accuracy. Another factor
that accounts for the difference in performance between
this work and that of Santoro et al.’s is the target language
script. It is well documented in the literature that Latin
script languages outperform non-Latin script languages
across LLM families and in different types of tasks, with
a particularly marked disparity in language generation
tasks ([37], [38]).

An interesting, yet expected, consideration is that
the polysemous dataset outperforms the monosemous
dataset across all metrics and approaches but the FS. The
results show that the model reaches higher accuracy and
similarity scores for the polysemous dataset, generat-
ing a greater number of outputs and leading to a higher
number of validated potential synonyms. This consider-
ation, which is aligned with the observation and results

of [21], applies not only to Ancient Greek, but also to
English. A possible explanation for this phenomenon is
that polysemous words tend to be more frequent than
monosemous words ([39]). As the frequency of a word
in pre-training data impacts the LLM’s ability to learn its
representation ([40]), more frequent words can be linked
to higher performance levels, as they are encountered
in a wider variety of contexts during model pre-training.
Moreover, in a task such as synonym generation, it is
likely that language models perform better with polyse-
mous compared to monosemous words, as they encode
richer semantic information, resulting in a higher proba-
bility of generating suitable outputs. This is because the
model is provided with a broader semantic basis from
which to draw suitable candidates.

3.2. Qualitative Analysis
Examples of generations across approaches divided for
the monosemous and polysemous datasets are shown in
Table 3.

Table 3
Examples of generations across approaches. The text not en-
closed in parentheses corresponds to the outputs of the model.
The lemmas presented in bold type represent validated poten-
tial synonyms. The translations provide the meaning of the
lemma that justifies the validation as a potential synonym of
the target word. Where no translation is provided, the gener-
ations are hallucinations of the model, which are presented in
roman font.

Monosemy Polysemy

W
or
d

ligús (shrill) krátos (strength)

ZS brakhús (short), oxûn arkhē ́ (power)

FS

olímos, trílos, fewperos,
fewpteros

hēgemonikón (dominant
part)

FT

hēlítēs (of the sun), polús
(loud)

dúnamis (strength), pónos
(toil), mégethos (might),

tíktō: synonyms:
gígnomai (generate:
synonyms: become),
nosēleúō (tend a sick

person)

One general observation regarding the results is that
in all three approaches the model often failed to generate
lemmas with the desired PoS. This particular task mis-
alignment also affected the English baseline, even though
much less frequently, as in 3:

3 cumulation: cumulative.

In this example, despite the mismatch in PoS, the two
lemmas share the same root, which is a phenomenon



observed also in some Ancient Greek generations, such
as 4.

4 homôs (similarly): hómoios (similar) (FS).

Another type of task misalignment that was frequently
observed in Santoro et al. [21] was the generation
of multi-word expressions, despite instructions in the
prompt explicitly prohibiting it. Notably, such instances
are extremely rare in our results, with just a few occur-
rences (e.g. met’hautoû (afterwards) (ZS)).

3.2.1. Non-Ancient Greek Generations

Across all three approaches, the generations include cases
of hallucinations, a term that refers to ‘generated content
that is nonsensical or unfaithful to the provided source
content’ ([41]). It has been observed in previous literature
that hallucinations are amplified by the scarcity of data
when dealing with low-resource languages ([42], [43]).
Hallucinations are far more frequent in the FS and FT
approaches than in ZS. In some cases, the hallucinations
share features with the input words, such as the root (see
5.a) or the prefix (5.b). In other cases, no such formal
relationship seems to exist (5.c).

5.a plêthos (multitude): poluplēstía (ZS).

5.b diakrínō (distinguish): dialúeimi, diēkribállēn
(FS).

5.c eupetôs (easily): tlēmatikós (FT).

Notably, some of the outputs are generated in languages
other than Ancient Greek, namely English and Modern
Greek, even though the prompt specifically instructs to
avoid this behavior (see A.1 and A.2). The inability of
LLMs to consistently generate text in a user’s desired
language is widely known in NLP and is referred to as
language confusion ([44]). Examples of language confu-
sion in the model’s generations are presented in 6.a and
6.b.

6.a arktikós (northern): psēlóten/flutter/tall (FT).

6.b éris (strife): antagōnismós (competition) (ZS).

Notably, Mistral models have been found to exhibit high
degrees of language confusion ([44]), so the presence
of languages other than Ancient Greek in the model’s
output is not surprising. The problem of English gener-
ations also impacted the results of Santoro et al., even
though such instances are quite rare in our study. On
the contrary, the outputs in Modern Greek are much
more numerous, which could depend on an interference
effect of the target language’s script. This is because
the model likely tends to produce outputs in a higher-
resource modern language with the same script, as for
Latin and English on the one hand, and Ancient Greek
and Modern Greek on the other.

3.2.2. Orthographical Errors and Inconsistencies

Taking a closer look at incorrectly generated outputs,
several typologies of orthographic errors and inconsis-
tencies were observed. Across approaches, some outputs
were written using multiple alphabets: alongside Greek
characters, characters from other scripts appeared, such
as Latin, Cyrillic, and Arabic (e.g dapánawm, blētē ŕioны).
Interestingly, these types of errors are less frequent in
the zero-shot setting compared to the other approaches.

A second typology of orthographic errors that was
observed is closely tied to the internal conventions of
Ancient Greek. Across all three training settings, lemmas
were generated lacking either the accent (7.a) or the initial
breathing mark (7.b). In other cases, the lemmas were
generated with an incorrect accent (7.c).

7.a krísis (dispute): kindunos (vs kíndunos) (danger)
(FT).

7.b hellēnikós (Greek): ellēnēios (vs hellēnēios)
(Greek) (FS).

7.c kritē ́s (judge): brabeûs (vs brabeús) (arbiter) (FS).

Notably, such incorrect generations are much less fre-
quent in the zero-shot setting. One may hypothesize that
these errors are related to the fact that Modern Greek
lacks the initial breathing mark and the iota subscript,
and retains a single accent type. A similar type of ortho-
graphic inconsistency, affecting only two generations, is
the use of the iota adscript instead of the iota subscript.
For the target word kléptēs (thief), the few-shot and fine-
tuning outputs are respectively lēistē ́s (robber) and lēïstē ś.
While such instances are linguistically and philologically
correct, they were not validated as potential synonyms
since they are not compatible with the AGWN graphic
standard regarding the iota subscript.

3.2.3. Potential Synonyms

Considering now the generations that were validated
as potential synonyms, some interesting observations
emerged from the results. One interesting phenomenon
that was observed is the generation of rare lemmas or
lexical items dating to the Postclassical stages of Ancient
Greek (e.g., the Roman or Byzantine period, [45]: 3-6).
For example, as a synonym for kritē ś (judge) the model
generates lutē ́r (arbitrator), a rare lemma that occurs only
6 times in the Thesaurus Linguae Graecae (TLG)9. Only
three of such instances are found in Classical texts, while
the remaining occurrences come from texts belonging
to the Imperial and Byzantine period. Furthermore, the
meaning ‘arbitrator’ associated with lutē ŕ is rare, as it is
attested only for one of its occurrences (A.Th.940), while

9Accessed July, 2025



it usually means ‘deliverer’. An example of a generation
consisting of a Postclassical lemma is boreinós (northern),
generated as a synonym for arktikós (northern), which
is attested 7 times in the TLG, all in Imperial Greek and
later, and eventually gives rise to the Modern Greek term
vorinós. While unexpected, these phenomena do not
impact the potential for the automatic population of the
AGWN proposed in this work, since the AGWN collects
lemmas independently of their frequency or the language
stage in which they are attested.

Focusing now on the difference in performance de-
pending on the PoS of the input lemma, Table 4 shows
for each approach the number of generations and the
number of validated synonyms across PoS, both divided
for datasets and overall.

Table 4
Model performance across PoS (Tot: generations for PoS; Syn:
potential synonyms for PoS). For each cell, the highest value
is presented in bold type to facilitate comparison.

Overall Polysemy Monosemy
Tot Syn Tot Syn Tot Syn

ZS

noun 27 9 15 7 12 2
verb 27 10 15 8 12 2
adj 36 12 19 9 17 3
adv 26 3 14 0 12 3

FS

noun 40 6 14 2 26 4
verb 35 2 12 1 23 1
adj 54 0 23 0 21 0
adv 40 1 12 1 28 0

FT

noun 148 17 107 15 41 2
verb 139 20 115 18 24 2
adj 66 5 40 4 26 1
adv 50 1 26 1 24 0

To
ta
l

noun 215 32 136 24 79 8
verb 201 32 142 27 59 5
adj 156 17 82 13 74 4
adv 116 5 52 2 64 3

Notably, the PoS for which the model generated the high-
est number of outputs is nouns (215), followed by verbs
(201). However, these overall results are highly influ-
enced by the FT data, which are very abundant and have
a great impact on the total. If we consider the ZS and FS
approaches alone, the PoS with the most numerous out-
puts is adjectives (ZS: 36; FS: 54). The PoS with the lowest
number of generations is adverbs, a trend that is quite
stable across approaches, independently of the dataset
considered. Concerning the number of validated syn-
onyms across PoS, the highest number of potential syn-
onyms is generated for nouns (32/215) and verbs (32/201),
even though this general trend does not apply to the ZS
approach, in which adjectives score the highest number
of potential synonyms. Overall, adverbs score the lowest
number of potential synonyms (5/116). The reason for
this difference in generation trends across PoS may be the

distribution of the training data used for fine-tuning, in
which nouns and verbs constituted the majority classes,
making up, respectively, 54% and 25% of the dataset (see
Section 2.1), possibly resulting in a bias of the fine-tuned
model. Furthermore, another possible explanation is
connected to the difference in performance between the
(roughly) polysemous and monosemous datasets already
discussed in Section 3.1: independently of the PoS of
the input word, the performance of the model is better
for polysemous input words across all approaches but
FS. Indeed, verbs are generally considered more polyse-
mous than other PoS as their meanings are thought to
be more flexible, thus encoding richer semantics ([46],
[47]). Nouns also exhibit a high degree of polysemy ([48]).
Since, as already discussed, polysemous words tend also
to be more frequent, the increase in performance for
these PoS may be linked both to a higher frequency in
the training data and to their greater polysemy, which
provides a broader semantic basis for the generation task
at hand.

4. Conclusions
This work has explored the potential of LLMs in the semi-
automatic population of the AGWN, evaluating and com-
paring multiple approaches. The first approach tested
was zero-shot, which, despite the lack of examples, gen-
erated numerous potential synonyms and achieved con-
siderable accuracy and similarity scores, given the task
at hand. Contrary to expectations, the few-shot setting
marked a decline in results across all evaluation metrics,
except the number of generations. Finally, fine-tuning
outperformed the few-shot setting, but scored lower accu-
racy and similarity values compared to zero-shot prompt-
ing. However, this approach scored the highest number
of generated outputs and potential synonyms.

The divergence between our results and the outcomes
of Santoro et al.’s analysis [21] is likely due to the more
recent language model employed, which shows enhanced
zero-shot performance, and to the different target lan-
guage, as the variation in available data and writing sys-
tem between Greek and Latin can significantly impact
the results.

Our analysis shows that, for the task at hand, the zero-
shot approach represents a promising starting point for
partially automating the population of the AGWN, with-
out needing the resources necessary for fine-tuning a
model. Zero-shot generations reach good scores of ac-
curacy and similarity, and in the majority of cases out-
puts are correctly spelled and lemmatized. On the other
hand, while fine-tuning results in lower precision, it leads
to a greater number of generations and potential syn-
onyms. This approach, while not as accurate as zero-shot,
might prove suitable in a human-in-the-loop scenario, in



which annotators can efficiently discard the inaccurate
outputs, accelerating the population process compared
to the fewer potential synonyms generated by zero-shot.

The experiments also revealed a marked difference in
performance between the two datasets: the model scores
higher on the polysemous data across all metrics and
approaches, except few-shot. This trend is evident not
only in the AG data, but also in the English baseline, and
it aligns with the results of Santoro et al. [21]. The ex-
planation for this difference in performance relies on the
richer semantic nature of polysemous lemmas, which
increases the probability of generating correct outputs.
Their increased frequency also positively affects the qual-
ity of the representations derived from the model during
pre-training.

Closely related to the previous observation is the dif-
ference in the number of generated outputs and potential
synonyms across PoS. Overall, nouns and verbs score
the highest number of generated outputs and potential
synonyms, even though there are some variations across
approaches (for example, ZS registers the highest num-
ber of potential synonyms for adjectives). In contrast,
adverbs register the lowest number of generated outputs
and potential synonyms, a result which is rather consis-
tent across approaches. These results likely reflect the
fact that verbs and nouns constitute the majority classes
in the fine-tuning dataset, which probably led to a bias in
the model. Furthermore, verbs and nouns are considered
highly polysemous PoS, thus the stronger performance
on verbs and nouns can be linked to the same factors that
lead to better results on the polysemous dataset.

Overall, this study reveals the potential of LLM-based
approaches to (partially) automate the annotation of lexi-
cal resources. The results, particularly from a qualitative
perspective, highlight the specific challenges of work-
ing with an ancient and low-resource language such as
Ancient Greek. The strategies explored can be used to
semi-automatically populate the AGWN by generating
candidate synonyms to be validated by a human anno-
tator. This human-in-the-loop approach would signifi-
cantly reduce the human manual effort, at the same time
allowing for a much faster enrichment of the resource.
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A. Prompts Used in the
Experiment

This appendix contains the full prompts used in the ex-
periment for both Ancient Greek and English.

A.1. Ancient Greek Prompt
zs_prompt = f"""You are a powerful

AI assistant trained in semantics and

Classics.

You are an Ancient Greek native

speaker. The only language you speak

is Ancient Greek.

Your task is to provide a bullet list

of Ancient Greek synonyms for a user-

chosen word.

Your response must contain the

generated synonyms as comma-separated

values.

Observe the following instructions

very closely: [INST]

- Generate only Ancient Greek

synonyms.
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- Provide single-word expressions

ONLY.

- Do NOT generate long phrases.

- Make sure to provide numerous

synonyms for each lemma.

-- ABSOLUTELY AVOID including any

additional explanations or comments

in your output.

- VERY IMPORTANT: DO NOT translate the

words.

- VERY IMPORTANT: Use ANCIENT GREEK

exclusively.

- VERY IMPORTANT: Generate ANCIENT

GREEK lemmas in the original script

with accurate diacritics (accents,

breathing marks, and vowel quantity

for long vowels indicated by macrons

or other notations).

- VERY IMPORTANT: Make sure the

outputs are spelled correctly.

- IMPORTANT: Do NOT generate any word

in Modern Greek.

- IMPORTANT: Generate words with the

same part of speech as the input

word,

for example if the input word is a

verb you must generate only verbs as

synonyms.

-- For NOUNS generate only the

NOMINATIVE CASE, as shown in the

examples below.

-- For VERBS generate only the FIRST-

PERSON SINGULAR of the INDICATIVE.

-- List each Ancient Greek word

separately with proper formatting.

"""

A.2. English Prompt
en_prompt=f"""You are a powerful AI

assistant trained in semantics. You

are an English native speaker. Your

task is to provide a bullet list of

English synonyms for a user-chosen

word.

Your response must contain the

generated synonyms as comma-separated

values.

Observe the following instructions

very closely: [INST]

- Generate only English synonyms.

- Provide single-word expressions

ONLY.

- Do NOT generate long phrases.

- Make sure to provide numerous

synonyms for each lemma.

-- ABSOLUTELY AVOID including any

additional explanations or comments

in your output.

- VERY IMPORTANT: Make sure the

outputs are spelled correctly.

- IMPORTANT: Generate words with the

same part of speech as the input word,

for example if the input word is a

verb you must generate only verbs as

synonyms.

-- List each English word separately

with proper formatting.

"""

A.3. Examples for the Few-Shot Prompt
word: ’nouthetē ́seis’
synonyms: [’paramuthía’, ’protropē ́’, ’parakéleusis’,
’parórmēsis’, ’paroksusmós’, ’peithō ́’, ’pístis’, ’kéntron’,
’múōps’, ’paraínesis’]

word: ’atimázō’
synonyms: [’kataiskhúnō’, ’aischúnō’, ’atimóō’,
’atimáō’]

word: ’theosebē ́s’
synonyms: [’deisidaímōn’, ’eusebēē ś’, ’eúphēmos’,
’pistós’]

word: ’autoû’
synonyms: [’entaûtha’, ’entháde’, ’autóthi’, ’éntha’,
’ekeî’]

word: ’trophē ́’
synonyms: [’deîpnon’, ’edōdē ́’, ’sîtos’, ’édesma’]

word: ’elassóō’
synonyms: [’koloúō’, ’meióō’, ’tapeinóō’, ’aphairéō’,
’diaphtheírō’]

word: ’iskhurós’
synonyms: [’drastē ́rios’, ’karterós’, ’energē ́s’, ’rhō-
maléos’, ’krataíos’, ’óbrimos’, ’sthenarós’, ’kraterós’]

word: ’oknērôs’
synonyms: [’phoberôs’, ’deilôs’]
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