Evaluating Large Language Models on Wikipedia Graph
Navigation: Insights from the WikiGame

Daniele Margiotta™?, Danilo Croce’ and Roberto Basili?

!Department of Enterprise Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
2Reveal s.r.l, Via Kenia 21, 00144, Rome, Italy

Abstract

Large Language Models (LLMs) are believed to encode substantial structural and factual knowledge from resources such as
Wikipedia, yet the extent to which they can exploit this internalized information for graph-based reasoning tasks remains
unclear. We present a systematic evaluation of LLM navigation strategies in the context of the WikiGame, a task requiring
players to reach a target Wikipedia page by traversing internal hyperlinks. We introduce a controlled experimental protocol
that compares human and model performance across multiple settings, including both “blind” navigation (without access to
outgoing links) and “link-aware” navigation (where available links are provided at each step). Using a large-scale dataset of
human gameplay, we benchmark state-of-the-art LLMs (GPT-4, Llama 3.1) on identical start-goal pairs, measuring success rate,
path efficiency, and error typologies. Our results show that while LLMs can match or surpass human accuracy under certain
conditions, they exhibit qualitatively different strategies and characteristic failure modes, such as generating structurally
invalid paths. Our findings highlight both the potential and the current limitations of LLMs in structured reasoning tasks,

and propose a reproducible, game-based framework for assessing their ability to generalize beyond memorization.
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1. Introduction

Large Language Models (LLMs) have demonstrated re-
markable progress across a wide range of linguistic,
reasoning, and knowledge-intensive tasks [1, 2]. This
progress is commonly attributed to pre-training on mas-
sive, web-scale corpora that include not only unstruc-
tured text, but also highly structured resources such as
Wikipedia [3]. As a result, there is increasing speculation
that LLMs may implicitly acquire not just isolated facts,
but also the latent structure, the network of hyperlinks,
conceptual proximity, and topological organization, of
sources like Wikipedia [4].

However, it remains an open question what it truly
means for an LLM to “internalize” a knowledge graph.
Does the model simply memorize page-level facts and fre-
quent co-occurrences, or does it develop an operational
understanding of the underlying relational structure, en-
abling it to solve combinatorial navigation tasks that
it has not directly memorized [3, 5]? Addressing these
questions is essential for assessing the actual capabilities
and limitations of LLMs, especially as they are increas-
ingly applied in scenarios that require reasoning beyond
surface-level retrieval.

In this work, we address these questions through the
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WikiGame' (also known as Wikispeedia [6]), a human-
invented challenge where the objective is to navigate
from a given Wikipedia start page to a target page, us-
ing only internal hyperlinks and as few clicks as possi-
ble.Crucially, success in the WikiGame is not a matter of
simple recall: it requires sequential link selection, con-
ceptual inference, and a practical understanding of the
Wikipedia graph’s structure. Human players bring back-
ground knowledge, associative reasoning, and an ability
to generalize; LLMs, in contrast, are tested on their ca-
pacity to replicate this process, whether via latent recall,
combinatorial reasoning, or structural generalization.

For example, consider the challenge of navigat-
ing from Germanium (a chemical element) to Rock
(geology). While these concepts are related at a high
level, Wikipedia’s hyperlink structure does not provide a
direct or trivial path between them. A successful player
must identify and traverse a plausible sequence of inter-
mediate pages, such as:

Germanium — Mineral — Earth’s crust — Rock
(geology)

avoiding shortcuts that may appear semantically valid
but do not correspond to actual Wikipedia links. This task
exemplifies the combinatorial complexity and the need
for real structural knowledge, rather than rote memoriza-
tion of facts. To rigorously investigate these capacities,
we construct a large-scale dataset of human WikiGame
sessions (approximately 4,000 start-goal pairs), annotate
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them with empirical difficulty (success rate), and define a
controlled evaluation framework spanning several exper-
imental conditions’. We benchmark two state-of-the-art
LLMs (Llama 3.1 [7] and GPT-4 [2]) in three settings char-
acterized by increasing amount of information: (i) Blind
Navigation, where the model is given only the names
of the start and end pages and must generate a naviga-
tion path without any additional guidance; (ii) Chain-
of-Thought Reasoning, where the model is asked to
explicitly explain the rationale behind each navigational
step [8]; and (iii) Link-Aware Navigation, where, at
each step, the model is provided with the full list of out-
going links from the current Wikipedia page, thus closely
simulating the experience and options available to a hu-
man player.

For each configuration, we assess not only overall suc-
cess, such as the path optimality, but also analyze failure
modes, including invalid links and hallucinated pages.
This allows us to explore whether LLM navigation relies
on memorization, structural reasoning, or search-like
strategies. While large models can match or exceed hu-
man performance in some settings, their errors often
stem from structural hallucinations, revealing the limits
between latent knowledge and true reasoning. Our work
offers a reproducible benchmark and a diagnostic frame-
work for evaluating how LLMs internalize knowledge
graphs, with implications for model evaluation and the
distinction between memorization and generalization.

In the rest of the paper, we review related work in
Section 2, define the WikiGame task in Section 3, present
experiments and results in Section 4, and conclude with
key findings and future perspectives in Section 5.

2. Related Work

LLMs as Knowledge Graph Navigators. The ques-
tion of whether Large Language Models can serve as
implicit knowledge bases [3], and, more deeply, whether
they internalize the structural and relational properties
of graph-based resources, has received increasing atten-
tion. While early benchmarks focused on factual recall or
simple question answering [3, 1], more recent work ex-
plores reasoning, pathfinding, and multi-hop navigation
on graph-structured data.

Navigation in Wikipedia and the WikiGame.
Wikipedia, as a richly interlinked graph, has served as
a challenging environment for both algorithmic agents
and neural models. Zaheer et al. [4] train agents to im-
itate random walks on Wikipedia, showing that neural
policies can learn to reach distant targets by leveraging
graph regularities. However, their focus is on synthetic

2All software and datasets are publicly available on GitHub at https:
//github.com/crux82/wikigame-1llm-eval.

agent trajectories and does not systematically benchmark
human or LLM strategies.

Graph-based neural architectures such as Relational
Graph Convolutional Networks have also been evalu-
ated on multi-hop reasoning tasks over Wikipedia sub-
graphs [5], highlighting the importance of both sym-
bolic and learned relational information for effective
pathfinding. Synthetic data approaches [9] attempt to re-
produce human navigation on Wikipedia, showing that
clickstream-inspired trajectories can approximate real
user behavior, but do not address the capacity of LLMs to
navigate the graph or compare them directly to human
performance. The WikiGame itself (and variants such as
Wikispeedia [6]) has long been a benchmark for human
semantic navigation, but only recently have researchers
begun to systematically evaluate LLMs on this task.

Generalization vs Memorization in LLMs. A core
research question is whether LLMs’ strong performance
on navigation reflects generalization from distributed
knowledge or mere memorization of surface patterns
and co-occurrences [3]. Prior work has highlighted both
the strengths and limitations of LLMs in knowledge-
intensive tasks, but comprehensive, human-comparable
evaluation on graph navigation remains scarce.

Our Contribution. In contrast to previous research,
our study offers a systematic comparison between hu-
mans and state-of-the-art LLMs on identical WikiGame
challenges. By varying the information available to the
models (blind vs. link-aware settings) and evaluating not
only success rates but also the nature of errors (e.g., in-
valid links, hallucinated pages), we provide new insights
into the mechanisms that underlie LLM navigation strate-
gies. This framework enables us to directly probe the ex-
tent to which LLMs genuinely reason about Wikipedia’s
structure versus relying on rote memorization or surface
heuristics.

3. WikiGame as a Probe for LLM
Reasoning

In this section, we formalize the WikiGame as a graph
navigation task and motivate its value as a benchmark
for large language models. We outline our experimental
protocol for evaluating LLM reasoning under different
information settings and introduce metrics to distinguish
memorization, structural generalization, and explicit rea-
soning.

These methodological choices establish a solid founda-
tion for analyzing the strategies and limitations of both
human and model-based Wikipedia navigation.


https://github.com/crux82/wikigame-llm-eval
https://github.com/crux82/wikigame-llm-eval

3.1. From Encyclopedia to Graph:
Formalizing Wikipedia Navigation

Wikipedia can naturally be represented as a directed
graph, where each node corresponds to an article and
each directed edge to a hyperlink from one article to
another. Formally, let G = (V, £) denote the Wikipedia
hyperlink graph, with V the set of pages and £ the set of
directed edges such that (v;, v;) € £ iff v; is hyperlinked
within the text of v;.

Given this structure, the WikiGame can be formu-
lated as a pathfinding problem: starting from a source
node s (the Start page), the agent must reach a target
node ¢ (the End page) by traversing a sequence of nodes
(vo = s,v1,...,v, = t), such that each consecutive
pair (vg, vg+1) corresponds to an existing edge in &.

The challenge lies not only in finding any path from
s to t, but in selecting paths that are plausible and effi-
cient, i.e., minimizing the number of steps, in line with
typical game objectives and human strategies. At each
step, the agent’s possible actions are constrained to the
outgoing links from the current page, and (depending on
the experimental condition) may or may not be explicitly
visible to the agent.

This formalization allows us to cast the WikiGame as
a sequential decision-making problem over a partially
observable and large-scale real-world graph. Crucially,
success requires not only factual knowledge, but also
structural reasoning and the ability to generalize over
Wikipedia’s highly interconnected topology, making it a
compelling testbed for both human and artificial agents.

3.2. Probing LLM Competence:
Experimental Paradigms

We evaluate LLMs under three progressively informative
settings, each designed to probe a different aspect of their
reasoning and navigation abilities:

Blind Navigation (Direct Path Prediction). In the
blind setting, the model is presented only with the ti-
tles of the start node (s) and end node (t), and is asked
to output a plausible sequence of Wikipedia page titles
forming a path from s to ¢. Crucially, at no step does
the model observe the set of valid outgoing links from
any node. This setting tests whether LLMs can retrieve
or reconstruct complex multi-step relations from inter-
nalized knowledge, probing their ability to generalize,
rather than simply recall isolated facts. Of particular in-
terest here is whether errors reflect “hallucinated” nodes
(page titles not present in Wikipedia) or “hallucinated”
links (pairs of existing pages for which no hyperlink ex-
ists in the actual graph). Such distinctions shed light on
whether the model’s apparent knowledge is structural or
superficial. The precise prompt is in Appendix A.

Blind Navigation with Chain-of-Thought Reason-
ing. This mode extends the previous setting by requir-
ing the model to articulate, in natural language, the rea-
soning behind each navigational step. The sequence
of justifications offers a window into the intermediate
representations and planning strategies of the model,
helping us distinguish whether successful paths arise
from semantically-grounded reasoning or from statisti-
cal shortcuts. Moreover, Chain-of-Thought (CoT) super-
vision [8] enables us to quantify the impact of explicit
reasoning on path quality and error rates. As before,
the model is not exposed to outgoing links at any point.
The prompt design for this condition is detailed in Ap-
pendix B.

Link-Aware Navigation (Stepwise Choice). Finally,
the link-aware mode simulates the actual gameplay ex-
perience: at each step, the model receives the set of out-
going links from the current node, and is requested to
select the next node (page) to traverse. This setting di-
rectly tests the model’s ability to reason under stepwise
constraints, avoid invalid transitions, and make locally
grounded decisions. Notably, this scenario also allows for
direct comparison to human strategies, since the action
space at each step is identical to what a player would
see. Here, the primary sources of error are choices of
suboptimal but valid links, and the rate of hallucinated
steps should, in principle, be minimized. See Appendix C
for the full prompt.

3.3. Evaluation Metrics: Dissecting
Navigational Behavior

To assess the navigation and reasoning abilities of LLMs
in the WikiGame, we employ complementary evaluation
metrics that capture different aspects of task performance,
including memorization, generalization, and strategy.

Success Rate. The most immediate measure is the
success rate, defined as the proportion of WikiGame in-
stances in which the agent (human or LLM, under a given
strategy) successfully reaches the target node ¢ starting
from node s via a valid sequence of Wikipedia links. This
metric provides a high-level view of navigational ability,
aggregating all sources of error into a single outcome
variable. High success rates in the blind setting, for in-
stance, may indicate substantial memorization or inter-
nalized global structure, while improvements in CoT or
link-aware settings can reveal the role of explicit reason-
ing or contextual cues. Contrasting success across these
modes helps disentangle whether LLMs rely on static
recall, reasoning over implicit knowledge, or dynamic
use of available context.



Mean Path Length (with Standard Deviation). Be-
yond mere task completion, we consider the efficiency
of navigation. For all successful paths, we compute the
average number of steps required to reach the goal, along
with the standard deviation to capture variability across
trials. Shorter average path lengths may suggest direct or
globally informed strategies (possibly indicative of inter-
nalized conceptual proximity or shortcut-finding) while
longer or more variable paths can reveal hesitancy, local
search, or lack of structural insight. Comparing path
lengths between humans and LLMs, and among settings,
provides a window into differences in search strategy
and the quality of graph representations.

Invalid Link Rate. For model-based solutions, we
compute the percentage of navigation attempts in which
a transition is made between two existing Wikipedia
pages, but the selected edge does not actually exist among
the outgoing links of the current page (i.e., (i, Vk+1) ¢
&, even though vi1 € V). This error mode is critical for
probing the distinction between true structural general-
ization and shallow recall: frequent invalid links imply
that the model has learned about entities but not their ac-
tual connectivity, while low rates suggest a more faithful
reconstruction of Wikipedia’s hyperlink topology. No-
tably, we expect invalid link errors to be most revealing
in the blind setting, where the temptation to hallucinate
plausible (but non-existent) transitions is highest.

Invalid Page Rate. Complementary to the above, we
also measure the proportion of model-generated paths
in which one or more nodes (v;) do not correspond to
any real Wikipedia page (v; ¢ V). This captures a dis-
tinct failure mode (hallucination of nonexistent entities)
which can arise from overgeneralization or semantic
drift. Tracking this error across different strategies (e.g.,
whether it is reduced by explicit reasoning or by access
to real links) informs our understanding of the interplay
between LLM world knowledge and task-specific prompt
structure.

4. Experimental Evaluation

4.1. Experimental Setup

We begin by collecting a large corpus of human
gameplay data from the public WikiGame platform
(thewikigame. com), which assigns users random start-
goal Wikipedia pairs and records navigation attempts,
both successful and unsuccessful. Using a custom scrap-
ing tool, we continuously harvested game records over
several weeks, yielding over 4000 unique games, each an-
notated with start and target page, number of attempts,
completion count, and aggregated success rate. This

broad base allows for a detailed analysis of game diffi-
culty: as shown in Figure 1, the distribution of human
success is highly skewed, with only a handful of games
approaching high completion rates and the majority pos-
ing a real challenge to human intuition and knowledge.
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Figure 1: Distribution of human success rates across the 4000
collected WikiGame instances. Each bar shows the percentage
of games whose completion rate by human players falls within
the corresponding interval. Most games are far from trivial,
with only a small fraction of tasks having high human success
rates.

To ensure both representativeness and feasibility for
LLM evaluation, we structured our experimental dataset
by difficulty, grouping games based on their human suc-
cess rate: Medium (50% < success rate < 75%), Hard
(25% < success rate < 50%), Very Hard (1% < success
rate < 25%), and Impossible (success rate = 0%). The
Easy category (success rate > 75%) was excluded, as
it contained only 6 games. From each bin, we selected
the 30 most-played games, resulting in a diverse set of
120 start-goal pairs that accurately reflect the real dis-
tribution of task difficulty, while keeping the evaluation
manageable.

For the model-based experiments, we selected a panel
of LLMs that exemplifies the diversity of current ar-
chitectures, scales, and access paradigms. Our evalu-
ation includes the latest proprietary GPT-4 models ac-
cessed via the OpenAl APL: gpt-4.1°, gpt-4.1-mini,
gpt-4.1-nano’, and gpt-40-mini®, chosen to cover
a spectrum from flagship large-scale models to compact
and cost-efficient variants. For the open-weight evalu-
ation, we used Meta’s Llama 3.1-8B-Instruct’, deployed
locally to ensure experimental control and reproducibil-
ity. This experimental design allows for direct compari-
son across proprietary versus open models, and across
varying model sizes and training data coverage. The
GPT-4 family was selected to probe the limits of pro-

Shttps://platform.openai.com/docs/models/gpt-4.1
*https://platform.openai.com/docs/models/gpt-4.1-mini
Shttps://platform.openai.com/docs/models/gpt-4.1-nano
®https://platform.openai.com/docs/models/gpt-4o-mini
"https://huggingface.co/meta-1lama/Llama-3.1-8B-Instruct
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prietary large-scale models with extensive training on
web data (including Wikipedia), while the Llama variant
allows us to assess the capabilities of an open, smaller-
scale architecture under more restricted computational
resources (local GPU). As can be seen in Figure 2 all mod-
els were evaluated under the three experimental modes
introduced in Section 3.2: Blind Navigation, Blind Naviga-
tion with Chain-of-Thought, and Link-Aware Navigation.
For OpenAI models, API calls were made with determin-
istic temperature (1" = 0) to ensure reproducibility. For
Llama, inference was run on local GPUs using a greedy
decoding strategy, avoiding any probabilistic sampling
and thus ensuring fully reproducible outputs. Notably,
the Blind modes required a single API call per game,
while the Link-Aware mode demanded one call per navi-
gation step, increasing both API cost and computational
resources, a key reason for limiting the test set to 120
games. All model outputs were automatically checked for
structural validity (i.e., presence of only real Wikipedia
page names and hyperlinks), with detailed error metrics
collected as described in Section 3.3. To ensure trans-
parency and reproducibility, all data, code, and prompt
templates are publicly available®.
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Figure 2: Success rates achieved by humans and different
LLMs on the 120 WikiGame tasks, ordered by difficulty, from
easiest on the left to most difficult on the right (based on
human success rates)

and experimental mode. LLM performance is shown for No
Reasoning, Chain-of-Thought (CoT), and Link-aware
conditions; human baseline is reported for comparison.

4.2. Results and Discussion

Comparing Human and Model Success. We present
a comparative analysis of human participants and Large
Language Models (LLMs) across the full set of WikiGame
tasks, stratified by difficulty. As shown in Figure 1, hu-
man success rates decrease steadily as task difficulty in-
creases, from approximately 56% on Medium tasks to 0%
on the Impossible category. Looking instead at Figure 2, in
the Blind settings (No Reasoning and Chain-of-Thought),

8Links to the dataset and code repository will be provided after
acceptance.

only the largest model (GPT-4.1) approaches or matches
human performance, particularly on the less difficult
games. When models are provided with explicit link in-
formation (Link-aware mode), success rates increase dra-
matically for all GPT-based models, with GPT-4.1 achiev-
ing perfect accuracy (100%) even on the hardest tasks. In
contrast, smaller models and Llama 3.1-8B exhibit lower
overall performance and are especially challenged as dif-
ficulty rises.

Table 1 details these trends, confirming the strong ad-
vantage of large-scale LLMs when given access to link
structure, and quantifying the performance gap between
model families and sizes, as well as with respect to hu-
mans. Notably, large models like GPT-4.1 nearly match
or even exceed human accuracy on medium and hard
games, even when required to hallucinate plausible paths
without structural information, demonstrating substan-
tial internalized knowledge of Wikipedia’s structure.

However, this capacity rapidly diminishes for smaller
models and Llama 3.1-8B, underscoring the importance of
both scale and training diversity for generalization in this
combinatorial setting. The Link-aware condition reveals
that explicit access to local structure allows even smaller
models to become more competitive, and often enables
large LLMs to outperform humans on the most difficult
tasks. These results highlight that while large LLMs inter-
nalize part of Wikipedia’s global structure, their ability
to generalize without explicit context remains limited,;
access to structural cues is critical for bridging the gap
between memorization and robust reasoning.

Remarkably, GPT-4.1 achieves success rates in the
Blind setting that are nearly indistinguishable from those
of human players, despite not having access to the out-
going links at each step, an advantage always available
to humans. This surprising alignment suggests that GPT-
4.1 has internalized a substantial portion of Wikipedia’s
structure, likely as a result of large-scale pretraining.
Such performance raises the question of whether these
models are simply memorizing large parts of Wikipedia’s
link graph or have developed more generalizable strate-
gies for navigation. In any case, the fact that a model can
solve the task as well as humans, even when deprived
of crucial contextual information, highlights both the
strengths and the unresolved boundaries of current LLM
capabilities.

Error Analysis: Invalid Links and Hallucinated
Pages We further analyze model behavior by quantify-
ing two principal categories of structural error: invalid
links - transitions between real Wikipedia pages that are
not connected in the actual hyperlink graph (and invalid
(hallucinated) pages) nodes that do not exist in Wikipedia.
Tables 2 and 3 summarize the error rates for all models,
difficulty levels, and information settings.

Invalid links represent the dominant failure mode



Table 1

Detailed success rates (%) of each model and human partici-
pants, across all difficulty categories and experimental settings
(No Reasoning, Chain-of-Thought, Link-aware)

Table 2

Invalid Link Rate: Percentage of navigation paths containing
at least one transition between two existing Wikipedia pages
for which no hyperlink actually exists. Results are reported
for all models, difficulty bins, and experimental modes.

Difficulty Model Blind CoT Link-aw.
GPT gpt-4.1 56.67%  56.67% 100.00% Difficulty Model Blind CoT Link-aw.
GPT gpt-40-mini 33.33%  40.00% 96.67% GPT gpt-4.1 43.33% 43.33% -
Medium GPT gpt-4.1-mini | 46.67% 46.67% 86.67% GPT gpt-4o-mini 66.67% 60.00% 3.33%
GPT gpt-4.1-nano | 16.67%  23.33% 53.33% Medium GPT gpt-4.1-mini | 53.33%  53.33% 13.33%
LLAMA 3.1 26.67%  26.67% 26.67% GPT gpt-4.1-nano 83.33% 76.67% 43.33%
Human 56.66% LLAMA 3.1 73.33% 66.67% 73.33%
GPT gpt-4.1 20.00%  23.33% 90.00% GPT gpt-4.1 80.00%  76.67% 10.00%
GPT gpt-40-mini 10.00% 6.67% 86.67% GPT gpt-40-mini 90.00% 93.33% 10.00%
Hard GPT gpt-4.1-mini 30.00% 16.67% 73.33% Hard GPT gpt-4.1-mini 70.00% 83.33% 26.67%
GPT gpt-4.1-nano | 10.00% 6.67% 20.00% GPT gpt-4.1-nano 90.00% 90.00% 70.00%
LLAMA 3.1 10.00% 6.67% 3.33% LLAMA 3.1 86.67% 93.33% 83.33%
Human 34.43% GPT gpt-4.1 96.67% 86.67% 6.67%
GPT gpt4.1 333%  13.33% 30.00% GPT gpt-4o-mini | 100.00%  100.00% 33.33%
GPT gpt-40-mini - - 63.33% Very Hard GPT gpt-4.1-mini 96.67% 93.33% 60.00%
Very Hard  GPT gpt-4.1-mini | 3.33%  667% 40.00% GPT gpt-4.1-nano | 100.00%  93.33%  80.00%
GPT gpt-4.1-nano - 3339 13.33% LLAMA 3.1 100.00%  80.00% 86.67%
LLAMA 3.1 _ _ 6.67% GPT gpt-4.1 93.33% 96.67% 10.00%
Human 14.84% . GPT gpt-4o-milni' 100.00%  100.00% 40.00%
GPT gpt-4.1 333% 3.33% 30.00% Impossible  GPT gpt-4.1-mini 96.67% 96.67% 83.33%
L GPT gpt-4.1-nano 100.00% 100.00% 83.33%
GPT gpt-do-mini ) ) 30.00% LLAMA 3.1 96.67%  93.33% 93.33%
Impossible  GPT gpt-4.1-mini - 3.33% 16.67% . . . .
GPT gpt-4.1-nano - - -
LLAMA 3.1 - - -
Human 0.00%

across all models, especially in the Blind and Chain-of-
Thought (CoT) conditions. Here, smaller models such
as GPT-4.1-nano and Llama 3.1-8B often exceed 70-80%
invalid link rates, while the best-performing model (GPT-
4.1) remains substantially lower but is still affected by in-
creasing task difficulty. Interestingly, generating explicit
reasoning with CoT prompts only marginally reduces
invalid link errors, and in some cases may even exacer-
bate them, suggesting that stepwise justifications do not
systematically enhance structural fidelity.

By contrast, providing local link information (Link-
aware mode) yields dramatic improvements for all GPT-
based models, with invalid link rates dropping to near-
zero on most settings, regardless of difficulty. This high-
lights the centrality of explicit structural cues for accurate
graph traversal. Notably, Llama 3.1-8B still struggles with
invalid links even in the Link-aware setting, indicating
architectural and training limitations not overcome by
local information alone. The generation of nonexistent
Wikipedia pages is a less frequent, but still important,
error type. Invalid page rates remain below 10% for most
models and settings, with higher incidences concentrated
among smaller models and in the most challenging tasks.
The GPT-4 family is notably conservative, rarely halluci-
nating new pages, while Llama 3.1-8B and smaller GPT
variants are more prone to this error, particularly under
Blind conditions. CoT reasoning occasionally increases
invalid page rates, perhaps reflecting a tendency toward

overgeneration in less robust models. Together, these re-
sults illustrate that the core challenge for LLMs in blind
navigation is not the invention of entirely new entities,
but rather the generation of plausible-yet-nonexistent
links between real Wikipedia pages. Invalid link rates
are highly sensitive to both model scale and the availabil-
ity of local context, whereas invalid page rates remain a
secondary but informative indicator of robustness. The
error patterns reinforce that, while large LLMs have in-
ternalized significant aspects of Wikipedia’s structure,
their global knowledge is incomplete and patchy, most
evident when explicit structural feedback is absent.

Navigation Efficiency. Table 4 reports the average
path lengths for each model and human participants
across task difficulty and experimental mode, revealing
a marked distinction in navigation efficiency. In both
the Blind (No Reasoning) and Chain-of-Thought (CoT)
settings, all language models produce navigation paths
that are, on average, substantially shorter than those of
human players. For instance, on Medium and Hard tasks,
humans typically require around 5.5 and 6.6 steps respec-
tively, whereas top-performing LLMs such as GPT-4.1
solve the same tasks in just 3-4 steps. This pattern sug-
gests that, when unconstrained by real hyperlink options,
LLMs tend to "jump" directly to the goal, likely exploit-
ing their internal representations of semantic relatedness
and making aggressive, shortcut-like connections not
accessible to humans.

In contrast, when models are placed in the Link-aware
mode (where only valid outgoing links are visible at each



Table 3

Invalid Page Rate: Percentage of navigation paths containing
at least one nonexistent Wikipedia page, by model, difficulty,
and experimental setting.

Table 4

Average path length (and standard deviation) for each model,
experimental mode, and difficulty. Human path lengths are
reported for direct comparison.

Difficulty Model Blind CoT Link-aw. Difficulty Model Blind CoT Link-aw.
GPT gpt-4.1 3,33% 3,33% - GPT gpt-4.1 3.06£0.56  3.17£0.72  3.03+0.85
GPT gpt-4o-mini 6,67% - - GPT gpt-4o-mini 3.10£0.74  3.41+1.24  5.24+3.73
Medium GPT gpt-4.1-mini 3,33% 3,33% - Medium GPT gpt-4.1-mini | 2.79+0.43  2.85+0.36  3.30+1.43
GPT gpt-4.1-nano | 10,00%  10,00% : GPT gpt-4.1-nano | 3.99+0.71  4.14:211  3.93+3.47
LLAMA 34 2000%  667% ; LLAMA 3.1 4258149  4.00:1.07  4.37+3.46
Human 5.50+1.27
GPT gpt-4.1 ) ) ] GPT gpt-4.1 3.830.75 3.57¢0.78  4.03%1.19
GPT gpt-do-mini | 3,33%  333% ) GPT EZt%o—mini 3.67:058  4.00£0.00  6.96£4.10
Hard GPT gpt-4.1-mini - 333% - Hard GPT gpt-4.1-mini | 3.22¢0.44  4.00:0.70  4.31+1.49
GPT gpt-4.1-nano | 10,00%  16,67% - GPT gpt-4.1-nano | 3.674058 4.50£0.70  7.83:8.03
LLAMA 3.1 30,00%  16,67% - LLAMA 3.1 4332058  4.00£0.00  17.0+0.00
GPT gpt-4.1 3,33% - - Human 6.601.39
GPT gpt-4o0-mini 6,67%  10,00% - GPT gpt-4.1 5.00%0.00 4520577  5.22¢1.50
Very Hard GPT gpt-4.1-mini 3,33% - - GPT gpt-4o-mini - - 111483
GPT gpt-4.1-nano | 16,67%  13,33% - Very Hard GPT gpt-4.1-mini | 5.00+0.00  5.50+0.70  5.58+1.88
LLAMA 3.1 23,33%  16,67% - GPT gpt-4.1-nano - 6.00£0.00  11.0+3.65
GPT gpt-4.1 6,67%  13,33% - LLAMA 3.1 - - 8.00+4.24
GPT gpt-40-mini 333%  6,67% - Human 7.341.79
Impossible  GPT gpt-4.1-mini - 333% _ GPTgpt-41 | 400000 400£0.00  7.12¢4.20
GPT gpt-4.1-nano | 30,00% 16,67% - ) GPT gpt-do-mini - - 1362572
LLAMA 3.1 30,00%  23,33% _ Impossible  GPT gpt-4.1-mini - 4.00£0.00  7.20+3.42
GPT gpt-4.1-nano - - -
LLAMA 3.1 - - -
Human -

step) average path lengths increase and can even ap-
proach or exceed human averages, particularly for more
difficult games. This shift reflects a more conservative
and locally grounded navigation style: restricted to real
options, models avoid risky or speculative moves and
instead opt for safer, if longer, paths. The difference is
especially evident in smaller models (e.g., Llama 3.1-8B),
which show much greater variance and, in some cases,
excessively long solutions as task complexity grows.

Interestingly, while shorter paths might seem opti-
mal, this efficiency in Blind settings often arises from
the use of invalid or hallucinated links, as indicated in
our previous error analysis. By contrast, the slightly
longer paths produced in Link-aware mode are typically
more faithful to Wikipedia’s structure, and thus better
reflect human-like and valid solutions. Consequently,
path length should always be interpreted alongside error
rates: efficiency alone does not guarantee correctness,
and valid navigation sometimes demands a willingness
to take longer, but legal, routes through the graph.

Key Insights and Open Challenges. Beyond quanti-
tative gains, our study reveals several less obvious but cru-
cial insights into LLM navigation and reasoning. Larger
GPT models, by virtue of scale and pretraining diversity,
are able to recombine fragments of Wikipedia knowl-
edge into plausible multi-step paths, even when direct
supervision for these specific routes is unlikely. This
compositional ability is especially evident in challenging
settings, where models often leverage high-traffic "hub"
pages as implicit waypoints—a behavior rarely observed

in smaller models such as Llama 3.1-8B, which tend to
generate less coherent or more error-prone sequences. In-
terestingly, when faced with semantically distant or coun-
terintuitive start-goal pairs, even the best models strug-
gle: their errors, however, remain structured (centered on
plausible but nonexistent links) rather than descending
into nonsensical outputs. This points to an internaliza-
tion of Wikipedia’s “semantic landscape” that is broad
but incomplete, with brittle spots where the true hyper-
link structure diverges from distributional similarity. A
further finding concerns the limits of Chain-of-Thought
prompting in structurally constrained tasks. While ver-
balized reasoning can support performance on factoid
or arithmetic challenges, in navigation it sometimes en-
courages overgeneration or speculative shortcuts, high-
lighting the limits of purely linguistic supervision for
inherently graph-based reasoning problems.

A further nuance emerges from our error analysis: not
all invalid links proposed by LLMs are necessarily mis-
takes in a semantic sense. In several cases, especially in
the Blind navigation setting, the models generate transi-
tions between pages that are not currently hyperlinked
in Wikipedia, but which would be both meaningful and
contextually appropriate. This phenomenon highlights
a subtle limitation of the evaluation protocol itself: the
Wikipedia graph, while vast, is not exhaustive, and may
omit reasonable connections that a knowledgeable agent
could plausibly infer. Consequently, some LLM “halluci-
nations” may in fact surface gaps in the existing knowl-
edge structure rather than true model failures. This ambi-



guity complicates the strict interpretation of invalid link
rates: high-performing models may occasionally reveal
“missing links” that reflect creative generalization rather
than simple error.

Error Analysis. A brief qualitative error analysis is
reported in the Appendix D, where we present concrete
examples illustrating common failure cases and error
types observed in model-generated paths.

5. Conclusion and Future Work

We present the first large-scale, controlled comparison
of human and LLM navigation on the WikiGame, evalu-
ating models and humans across a spectrum of difficulty
and information conditions. Our results show that top-
performing LLMs (especially GPT-4 variants) can rival or
surpass human accuracy on challenging navigation tasks,
but their performance is strongly dependent on scale,
pretraining data, and access to link information. Three
key findings emerge. First, large LLMs can reconstruct
plausible Wikipedia paths even without link access, evi-
dencing internalized semantic and relational knowledge,
though their errors (notably invalid links) indicate that
this structural understanding remains incomplete. Sec-
ond, providing explicit link context (“link-awareness”)
dramatically improves both accuracy and structural va-
lidity, particularly for larger models. Third, models and
humans differ systematically: LLMs take shorter, riskier
routes relying on semantic proximity, while humans pre-
fer longer, more reliable paths.

Our study has several limitations: the range of start-
goal pairs and models is constrained by cost, and our met-
rics focus on structural correctness rather than semantic
nuance or user experience. Expanding to additional ar-
chitectures, with larger dimensions multilingual Wikis,
or richer evaluation criteria represents important future
work. In summary, LLMs show strong but imperfect
generalization beyond memorization, with qualitative
strategy differences persisting relative to humans. Future
research should probe broader model families, alterna-
tive domains, and hybrid approaches that combine LLM
reasoning with explicit graph traversal, as well as deeper
comparisons of human and model navigation strategies.
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A. Prompt: Blind - No Reasoning

This prompt instructs the model to generate a direct navigation path from a given start Wikipedia page to a target
page, using as few steps as possible. The model must output only the sequence of page titles, for the model it is
as if it were the link, (separated by "->") with no explanation or reasoning, simulating the most basic WikiGame
navigation scenario without any access to outgoing links or intermediate guidance.

The WikiGame (also known as Wikirace, Wikispeedia, WikiGolf, or Wikipedia Speedrun) is a game where players must navigate from
one Wikipedia page to another by clicking only internal links within the article body. The goal is to reach the target
page using the fewest number of clicks or in the shortest time possible.

How to play:

A start page and an end page on Wikipedia are selected. These can be chosen randomly or decided by the players.

Starting from the Start_Node, you must click only on internal links found within the main body of the article to reach the
End_Node.

Your task:

The user will provide a Start_Node and an End_Node.

You must generate a path from the start to the end, trying to use the fewest possible link hops.

Do not explain anything.

The only output should be:

- A line containing ###

- A single line with the names of the pages in the path, separated by -> (e.g., Pagel -> Page2 -> Page3)

Expected output format:
H#it#
Pagel -> Page2 -> Page3 -> Page4

Important:

- Pagel -> Page2 -> Page3 -> Page4 it’s only an example for the output format, don’t use as solution
- Write only the page titles separated by ->.

- Do not include any reasoning or explanation.

- Do not write anything before or after the final line.

- Start your output with ### on a line by itself.

B. Prompt: Blind - Reasoning

This prompt requires the model to solve the WikiGame navigation task while explicitly articulating the reasoning
behind each step. At every hop, the model must briefly explain its choice, and only after completing the path, output
the full solution as a sequence of page titles. This setting aims to probe the model’s internal reasoning process and
to assess whether explanation improves path validity or plausibility.

The WikiGame (also known as Wikirace, Wikispeedia, WikiGolf, or Wikipedia Speedrun) is a game where players must navigate from
one Wikipedia page to another by clicking only internal links within the article body. The goal is to reach the target
page using the fewest number of clicks or in the shortest time possible.

How to play:

A start page and an end page on Wikipedia are selected. These can be chosen randomly or decided by the players.

Starting from the Start_Node, you must click only on internal links found within the main body of the article to reach the
End_Node.

Your task:

solve the path from the Start Node to the End Node using as few steps as possible.
At each step, you must explain why you’re clicking on the chosen link.

Once you’ve reached the destination, write the full path using -> between page names.

Instructions:

You will be given two page names: Start_Node and End_Node.

Starting from Start_Node, find a path to reach End_Node.

At each step, explain briefly why you’re choosing that link.

When you reach the destination:

- First, think to an Explanation to reach the End Node from Start Node
- Then write a line with just ###

- Finally write the full path as a list of link names separated by ->
- Do not include any text before or after the final path

Important:
- Do not skip the ### line before the full path.




- Do not add explanations after the ### section.

- The final line must contain only Wikipedia page titles separated by ->, nothing else.

- The final line must contain all the page title ordered by the order choice during the Explanation.

- The final line must start with the Start_Node and finish with the End_Node (whitout explanation or suffix)

Expected output format:

Explanation:

1. I start at "Page 1" (Start_Node) and click on "Page 2" because ...

2. From "Page 2", I click on "Page 3" because ...

3. From "Page 3", I go to "Page 4" (End_Node) which is the final goal because ...
HitH

Pagel -> Page2 -> Page3 -> Page4

C. Prompt: Link-Aware

In this prompt, the model is presented at each step with the explicit list of outgoing links from the current Wikipedia
page and must choose one to move closer to the target page. No reasoning or explanation is required (only the
chosen page name is output) thus closely mimicking the human decision process in an actual WikiGame session
with visible navigation options. This mode directly tests the model’s ability to select valid and effective next steps

when provided with local link context.

The WikiGame (also known as Wikirace, Wikispeedia, WikiGolf, or Wikipedia Speedrun) is a game where players must navigate from
one Wikipedia page to another by clicking only internal links within the article body. The goal is to reach the target
page using the fewest number of clicks or in the shortest time possible.

How to play:

A start page and an end page on Wikipedia are selected. These can be chosen randomly or decided by the players.

Starting from the Start_Node, you must click only on internal links found within the main body of the article to reach the
End_Node.

Your task:
The user will provide a Start_Node and an End Node and a List_Link_From_Start Node, a list of page name linked from Start_Node

You must make a unique choice with a page name from those proposed in List_Link_From_Start_Node, the page you choose must get
you as close as possible from Start_Node to End_Node.

Make every time a choice to reach the End_Node.

Do not explain anything.

The only output should be:

- A line containing ###

- The unique page name choice, only one from the list List_Link_From_Start_Node

- A final line containing eee@

Expected output format:
H#it#

Page_Name_Choice

@e@

Very Important Instruction:

- Write only the page titles choice.

- You must choice the page from the list List_Link_ From_Start_Node

- Do not include any reasoning or explanation.

- Start your output with ### on a line by itself.

After the page name choice write a last line with eee

- Don’t write the same page name of the Start_Node, you will lose.

- Don’t write a page name that not is in the List_Link_From_Start_Node

- Don’t change the case of page name, write in the same way is in the List_Link_From_Start_ Node

D. Error Analysis

To illustrate typical model errors and their underlying causes, we present a qualitative analysis of failed navigation
attempts in the Blind settings (No Reasoning and CoT), focusing on the most frequent error type: Invalid Link, where
a transition is generated between two existing Wikipedia pages, but the corresponding hyperlink does not exist.



Case 1: Semantic Plausibility without Structural Support

Task: Medium difficulty, gpt-40-mini (Blind - No Reasoning)

Start: Germanium  End: Rock_(geology)

Generated Path: Germanium — Metalloid — Silicon — Rock_(geology)

Error: No link from Silicon to Rock_(geology).

While Silicon and Rock_(geology) are closely related semantically, the Wikipedia page for Silicon does not
link directly to Rock_(geology). In contrast, human players typically reach the target via longer, structurally
valid paths, e.g., through Mineral, Earth’s crust, or Solid.

Case 2: Link Hallucination from Mentioned but Unlinked Entities

Task: Very Hard, gpt-4.1 (Blind - Reasoning)

Start: Clock  End: Computing

Generated Path: Clock — Computer — Computing

Error: No link from Clock to Computer.

The model identifies Computer as conceptually relevant (and mentioned in the Clock article text), but this mention
is not a hyperlink. Human solutions tend to traverse more granular technical or historical intermediates, yielding
longer but valid paths.

Case 3: Overgeneralization of Conceptual Connections

Task: Very Hard, gpt-40-mini (Blind - Reasoning)

Start: Clock  End: Computing

Generated Path: Clock — Time — Measurement — Computing

Error: No link from Measurement to Computing.

Computing is present as a term within Measurement, but not as a direct hyperlink. The LLM overgeneralizes the
apparent connection, skipping intermediate concepts that human players usually include.

Case 4: Surface Similarity versus Structural Reality

Task: Medium, gpt-40-mini (Blind - No Reasoning)

Start: Diesel_engine End: Electric_charge

Generated Path: Diesel_engine — Internal_combustion_engine — Electric_vehicle —
Electric_charge

Error: No link from Electric_vehicle to Electric_charge.

Although Electric_vehicle is strongly associated with Electric_charge in meaning, Wikipedia’s link
structure does not provide a direct connection. Human players reliably reach the target via technical or physical
intermediates such as Spark plug, Electric current, or Piezoelectricity.

Summary. Across these cases, LLMs display a tendency to infer links based on high-level conceptual associations
or textual mentions rather than strictly adhering to Wikipedia’s hyperlink structure. This behavior is particularly
evident in Blind settings, where models must rely on internalized world knowledge. In contrast, human players
favor longer but structurally valid paths. These examples highlight a key challenge for LLM-based graph navigation:
distinguishing plausible but invalid shortcuts from topologically feasible solutions.
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