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Abstract
Large Speech Models (LSMs), pre-trained on extensive speech corpora, have recently emerged as powerful foundations in the
audio processing field, demonstrating strong transfer capabilities to downstream tasks such as speaker identification and
emotion recognition. However, while these models excel on speech-centric tasks, limited research has investigated their
adaptability to Non-Verbal Vocalization (NVV) tasks, which involve vocal bursts like laughter, sighs, shrieks, and moans.

In this work, we examine how well LSMs, specifically Wav2Vec 2.0, HuBERT, WavLM, and Whisper, can be adapted to
NVV tasks. We conduct experiments using both linear probing to evaluate the pre-trained knowledge relevant to NVVs, and
Parameter-Efficient Fine-Tuning (PEFT) techniques, including LoRA, Adapters, and Prompt Tuning. Experimental results on
NVV datasets—ASVP-ESD, CNVVE, Non-Verbal Vocalization Dataset, ReCANVo, VIVAE—indicate that Whisper-based models
consistently achieve superior performance, which is further enhanced through the application of LoRA. Additionally, our
layer-wise analysis reveals that applying PEFT specifically to layers with lower NVV information is key to effective model
adaptation, providing valuable insights for optimizing fine-tuning strategies in future work. The repository associated with
this work can be found here: https://github.com/links-ads/kk-nonverbal-vocal-class
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1. Introduction
Understanding and correctly identifying emotional cues
in human vocalizations is essential for building conver-
sational systems capable of engaging with people in an
emotionally aware and natural manner [1, 2]. Emotional
information in the human voice is transmitted mainly
through two distinct pathways: speech prosody—which
encompasses features such as intonation, rhythm, and vo-
cal quality [3]—and non-verbal vocal sounds, commonly
referred to as vocal bursts [4], which include expressions
like laughter, sighs, screams, and moans. Importantly,
these non-speech sounds serve as critical communicative
tools, particularly for individuals with profound disabili-
ties or speech limitations, since more than 96% of people
with speech impairments are still able to produce non-
verbal vocalizations [5].

While much research has focused on speech-related
tasks such as speaker recognition, speaker diarization,
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and emotion recognition from prosody [6], the domain
of Non-Verbal Vocalizations (NVV) has received com-
paratively little attention [7, 1]. Early approaches for
NVV analysis often relied on Hidden Markov Models or
Convolutional Neural Networks. However, the advent
of Transformer architectures [8] has led to the develop-
ment of Large Speech Models (LSMs), including Wav2Vec
2.0 [9], HuBERT [10], WavLM [11], and Whisper [12],
which have demonstrated impressive transfer learning
capabilities on speech-based tasks. Despite this success,
the adaptability of these models to NVV tasks remains
largely unexplored.

In this work, we systematically investigate how vari-
ous LSMs perform as feature extractors for NVV recogni-
tion, aiming to understand the extent to which non-verbal
knowledge is already embedded in their pre-trained rep-
resentations. To further enhance their adaptation to NVV
tasks, we apply Parameter-Efficient Fine-Tuning (PEFT)
strategies [13], including Adapters [14], Prompt Tuning
[15], and LoRA [16].

Our experimental results, conducted across five
NVV datasets—ASVP-ESD, CNVVE, Non-Verbal Vocaliza-
tion Dataset, ReCANVo, VIVAE—indicate that Whisper
consistently outperforms Wav2Vec 2.0, HuBERT, and
WavLM, especially when fine-tuned with PEFT tech-
niques. Among these, LoRA achieves the best overall
performance. Further analysis of the Transformer layers
reveals that non-verbal information is primarily captured
in the later layers of Whisper. Interestingly, we find that
applying LoRA exclusively to earlier, less important lay-
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ers yields better adaptation compared to focusing on the
layers already rich in non-verbal knowledge. This coun-
terintuitive result suggests that adjusting the layers with
initially limited task relevance is crucial, as these layers
benefit most from targeted adaptation.

The main contributions of this work are:

• We evaluate the adaptability of Large Speech Mod-
els (Wav2Vec 2.0, HuBERT, WavLM, and Whisper)
to Non-Verbal Vocalization tasks using both lin-
ear probing and Parameter-Efficient Fine-Tuning
techniques on five NVV datasets.

• We demonstrate that Whisper achieves the
strongest performance across all datasets, and
that LoRA is the most effective PEFT method
when compared to Adapters and Prompt Tuning.

• Through layer-wise importance analysis, we ob-
serve that non-verbal information is predomi-
nantly encoded in the later layers of Whisper.
Surprisingly, we find that adapting less impor-
tant layers is more beneficial for task-specific
performance than focusing solely on the most
informative layers.

2. Related Work

2.1. Non Verbal Vocalization
Early approaches to recognizing Non-Verbal Vocaliza-
tions (NVVs) primarily relied on Hidden Markov Models
(HMMs), which analyzed vocal signals based on acoustic
features such as intensity, pitch, and vowel articulation
patterns [17, 18]. Despite their initial success, these mod-
els were limited by their dependence on linear modeling,
susceptibility to noise interference, and challenges in
handling large or complex datasets.

To address these limitations, subsequent research tran-
sitioned towards employing convolutional neural net-
works (CNNs) that process time-frequency representa-
tions like Mel spectrograms and Mel-Frequency Cep-
stral Coefficients (MFCCs) [7]. Recent progress has been
driven by the adoption of Transformer-based frameworks
capable of learning from massive audio datasets. Draw-
ing inspiration from large-scale speech models such as
Wav2Vec 2.0 and Whisper, these state-of-the-art systems
have enabled the classification of up to 67 distinct types
of vocal expressions [1].

Following this research direction, Koudounas et al.
[19] proposed a new foundation model trained on 125
hours of non-verbal vocalization data, demonstrating
significantly improved performance on downstream clas-
sification tasks.

2.2. Large Speech Models
Recent advancements in natural language processing
(NLP) and computer vision (CV) have leveraged vast
amounts of unlabeled data using Self-Supervised Learn-
ing [20, 21] and Weakly Supervised Learning [22]. In-
spired by techniques such as masked language modeling
in NLP and image modeling in CV, Wav2Vec 2.0 [9] in-
troduced a Large Speech Model (LSM) trained through
masked speech modeling on large-scale audio datasets,
including the LibriSpeech corpus [23] and LibriVox [24].

Following Wav2Vec 2.0, subsequent LSMs such as
HuBERT [10] and WavLM [11] further advanced self-
supervised pretraining approaches. In parallel, Whisper
[12] was introduced, trained with large-scale weak su-
pervision from paired audio and transcription data using
an encoder-decoder transformer architecture.

These large speech models have demonstrated strong
capabilities in learning rich and robust speech representa-
tions from large datasets, leading to significant improve-
ments in various tasks, including language modeling,
audio classification, and speech-to-text transcription.

2.3. Parameter Efficient Finetuning
Large-scale models demonstrate strong adaptability
across a wide range of downstream tasks, but this of-
ten comes at a significant computational cost. To address
this, Parameter-Efficient Fine-Tuning (PEFT) techniques
have emerged, aiming to introduce minimal task-specific
parameters while keeping the majority of the pretrained
model unchanged. This approach preserves the model’s
generalization ability and reduces the number of param-
eters that require modification.

As outlined by Han et al. [13], PEFT methods can be
broadly categorized into two types: Additive PEFT and
Reparameterized PEFT. Additive PEFT methods include
techniques such as Adapters [14] and Prompt Tuning
[15], which introduce additional learnable components
at either the activation level or through prompt-based
conditioning without altering the core model parame-
ters. Reparameterized PEFT approaches, such as LoRA
[16], apply low-rank adaptations to the weight matrices,
effectively transforming the model’s parameter space
while maintaining the original architecture and infer-
ence speed.

These parameter-efficient strategies have shown
strong results in English Speech Emotion Recognition
tasks [25, 26, 27], with LoRA in particular demonstrating
notable performance. In this work, we investigate the
application of Adapters, Prompt Tuning, and LoRA for
adapting Large Speech Models to the classification of
Non-Verbal Vocalizations.



Figure 1: Overview of our Non-Verbal Vocalization Classifier, which consists of a Large Speech Model fine-tuned using the
Parameter Efficient approach, followed by a classification head.

3. Non-Verbal Vocalization
Classifier

In this section, we describe the architecture of the Non-
Verbal Vocalization classifier illustrated in Figure 1. The
model is composed of a Large Speech Model serving as
the backbone ℬ, with a classifier 𝒞 stacked on top. Addi-
tionally, we describe the integration of PEFT techniques,
which can be selectively applied to the Transformer lay-
ers of the LSM to enhance adaptability while minimizing
the number of trainable parameters.

3.1. Large Speech Models
Wav2Vec 2.0 Wav2Vec 2.0 demonstrated, for the first
time, that it is possible to learn powerful speech represen-
tations directly from raw audio without requiring labels.
The architecture consists of a multi-layer 1D convolu-
tional feature encoder, which takes raw audio input 𝑋
and produces latent representations 𝑍 = {𝑧1, . . . , 𝑧𝑇 },
where 𝑇 denotes the number of frames, each correspond-
ing to 25 ms of audio. These latent representations 𝑍 are
then passed through a Transformer network to obtain
contextualized representations 𝐶 = {𝑐1, . . . , 𝑐𝑇 }. Addi-
tionally, the output of the feature encoder is discretized
using product quantization in the latent space [28]. This
discretization enables the application of masked speech
modeling, the core innovation of Wav2Vec 2.0’s self-
supervised learning strategy. The model is trained to
solve a contrastive task, where it must correctly identify
the true quantized latent representation of a masked time
step from a set of distractor candidates.

HuBERT HuBERT [10] introduced the use of an acous-
tic unit discovery system, such as k-means clustering
applied to MFCC features, to generate frame-level tar-
gets for both masked and unmasked tokens. By adjusting
the number of clusters (𝑘), the system produces targets of
varying granularity, ranging from broad vowel categories
to more fine-grained senones. Similar to Wav2Vec 2.0,
the HuBERT architecture employs a 1D convolutional
feature encoder with seven layers, using a frame size of
20 ms, followed by a series of Transformer blocks for
contextual representation learning.

WavLM The WavLM framework [11] further extends
the pretraining approach introduced by Wav2Vec 2.0 by
integrating both masked speech prediction and speech de-
noising into the pretraining process. Specifically, WavLM
introduces masked speech denoising, where portions of
the input are artificially corrupted with simulated noise
or overlapping speech. The model is then tasked with
predicting the pseudo-labels of the original clean speech
in the masked regions, similar to the approach used in
HuBERT. This strategy enhances the model’s robustness
in complex acoustic environments.

Like previous models, WavLM employs a 1D convolu-
tional feature encoder followed by a Transformer encoder.
The Transformer in WavLM is augmented with gated
relative position bias, which improves the modeling of
interactions between speech segments and enhances the
model’s ability to capture long-range dependencies.



Whisper Unlike previous models, Whisper adopts
a weakly supervised learning paradigm that relies on
paired audio and transcription data. Specifically, it pre-
dicts raw text transcripts directly from audio without
requiring significant text standardization. Whisper em-
ploys an encoder-decoder Transformer architecture, con-
sisting of an encoder𝐸 and a decoder𝐷, which processes
Mel spectrograms instead of raw waveforms as used in
earlier models. Formally, given an input audio signal
𝑋 , the model first applies two 1D convolutional layers
with GELU activation as a feature encoder, followed by
Transformer blocks to produce contextualized internal
representations. These representations are then used by
the BERT-like decoder 𝐷 to generate the output text.

In this work, we utilize the Whisper model solely as a
feature extractor by using the encoder 𝐸 as backbone ℬ
and discarding the decoder 𝐷.

3.2. PEFT Methods
Adapter Adapters introduce small, trainable mod-
ules within Transformer layers to enable efficient fine-
tuning. Each adapter consists of a down-projection ma-
trix 𝑊down ∈ R𝑟×𝑑, a non-linear activation 𝜎(·), and an
up-projection matrix 𝑊up ∈ R𝑑×𝑟 , where 𝑑 is the hidden
size and 𝑟 is the bottleneck dimension.

Given input ℎin, the adapter output with residual con-
nection is:

Adapter(𝑐) = 𝑊up 𝜎 (𝑊down 𝑐) + 𝑐 (1)

Prompt Tuning Unlike adapters, embedding prompts
introduce learnable prompt vectors that are prepended to
the input sequence at each Transformer layer. Formally,
the input sequence to layer 𝑙 is:

𝑋(𝑙) =
[︁
𝑝
(𝑙)
1 , . . . , 𝑝

(𝑙)
𝑁𝑃

, 𝑐
(𝑙)
1 , . . . , 𝑐

(𝑙)
𝑁𝐶

]︁
(2)

where 𝑝(𝑙)𝑖 are the continuous prompt tokens and 𝑐
(𝑙)
𝑖 are

the original input tokens. Here, 𝑁𝑃 denotes the number
of continuous prompt tokens, and 𝑁𝐶 is the length of
the original input. This approach allows task-specific
information to be injected directly into the model without
modifying its internal weights.

LoRA LoRA enhances each Transformer layer by ap-
plying a low-rank decomposition to the pretrained
weight matrix 𝑊0 ∈ R𝑑×𝑘 , enabling parameter-efficient
fine-tuning without altering the original model weights.
It adds two additional trainable matrices: 𝑊down ∈ R𝑟×𝑘

and 𝑊up ∈ R𝑑×𝑟 , where 𝑟 is the rank, typically much
smaller than min(𝑑, 𝑘).

Given an input ℎin, the original output 𝑊0ℎin is up-
dated with a task-specific adjustment:

ℎout = 𝑊0ℎin +
𝛼

𝑟
𝑊up𝑊downℎin (3)

where 𝛼 is a scaling coefficient that balances the adap-
tation impact. At initialization, 𝑊up is set to zero and
𝑊down is randomly initialized, ensuring that the model
initially behaves as the pretrained base without modifi-
cation. This strategy allows LoRA to inject task-specific
knowledge while preserving the original model’s struc-
ture and maintaining fast inference.

3.3. Classifier Head
To perform non-verbal event classification, we append
a classifier 𝒞 to the backbone ℬ of the Large Speech
Model. From the Transformer encoder, we obtain hidden
representations across all layers denoted by {ℎ𝑙

𝑡}, where
𝑙 = 1, . . . , 𝐿 indexes the layers and 𝑡 = 1, . . . , 𝑇 indexes
the sequence frames.

We aggregate these multi-layer representations into
a unified sequence {ℎ*

𝑡 }𝑇𝑡=1 by applying a learnable
weighted sum across layers. This aggregation is formal-
ized by the function 𝒮 : R𝐿×𝑇×𝑑 → R𝑇×𝑑, defined
as:

ℎ*
𝑡 =

𝐿∑︁
𝑙=1

𝑤𝑙 · ℎ𝑙
𝑡, ∀𝑡 ∈ {1, . . . , 𝑇} (4)

where each weight 𝑤𝑙 satisfies 𝑤𝑙 ≥ 0 and the weights
are normalized such that

∑︀𝐿
𝑙=1 𝑤𝑙 = 1.

The resulting sequence {ℎ*
𝑡 } is first projected using a

frame-wise linear transformation ℒ1 : R𝑑 → R𝑚. Fol-
lowing standard practices in speech emotion recognition
[26], we apply temporal aggregation via average pooling
𝒫 over the 𝑇 frames to produce a single vector summa-
rizing the input audio. This pooled representation is then
fed into a classification layer 𝒪 : R𝑚 → R𝑘 , which
outputs the logits corresponding to the target classes.

The overall classifier 𝒞 can be concisely expressed as:

𝒞
(︁
{ℎ*

𝑡 }𝑇𝑡=1

)︁
= 𝒪

(︁
𝒫
(︁
ℒ1

(︁
{ℎ*

𝑡 }𝑇𝑡=1

)︁)︁)︁
(5)

4. Experiments

4.1. Datasets
ASVP-ESD The ASVP-ESD (Audio, Speech and Vision
Processing Lab Emotional Sound Database) [29] com-
prises 12,625 emotion-related audio samples, including
both speech and non-speech vocalizations. These sam-
ples were collected from movies, YouTube channels, and
various other online sources. Each recording is anno-
tated with one of 12 emotion categories, plus an addi-
tional "breath" label. All audio files are mono-channel
and sampled at 16 kHz.



Table 1
Linear probing results of Large Speech Models are reported for the ASVP-ESD, CNVVE, Non-Verbal Vocalization Dataset,
ReCANVo, and VIVAE datasets, using Accuracy and Macro F1 as evaluation metrics. For each dataset, the best results are
highlighted in gray.

Model
ASVP ESD CNVVE Nonverbal ReCanVo ViVAE
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Whisper Tiny 54.75 38.81 80.43 81.01 45.21 44.09 44.50 35.95 36.81 31.75

Whisper Base 59.17 45.06 84.78 84.98 57.53 57.21 45.74 37.31 38.04 36.86

Whisper Small 61.98 46.32 73.91 72.97 57.53 56.49 45.58 35.77 38.04 33.58

HuBERT Base 52.48 35.13 60.87 57.04 47.95 47.81 40.62 30.20 34.97 30.01

WavLM Base Plus 45.25 28.94 45.65 39.14 36.99 37.88 32.09 21.26 20.86 10.07

Wav2Vec2 Base 51.94 34.3 56.52 53.18 47.95 45.24 39.22 32.77 30.06 20.71

CNVVE The Dataset and Benchmark for Classifying
Non-verbal Voice Expressions (CNVVE) [7] consists of
950 audio recordings from 42 participants. Each record-
ing is labeled with one of six non-verbal voice expression
categories. The audio samples are mono-channel and
sampled at 16 kHz.

Non-verbal Vocalization Dataset The Non-verbal
Vocalization Dataset1 includes crowdsourced audio
recordings of non-verbal vocalizations categorized into
16 distinct labels. All recordings are sampled at 16 kHz,
with 16-bit resolution and mono-channel format.

ReCANVo The Real-World Communicative and Affec-
tive Nonverbal Vocalizations (ReCANVo) dataset [30]
contains over 7,000 vocalizations produced by minimally
speaking individuals aged between 6 and 25 years. Each
vocalization is annotated with one of six communicative
or affective labels.

VIVAE The Variably Intense Vocalizations of Affect
and Emotion (VIVAE) dataset [31] comprises 1,085 audio
recordings from 11 speakers. The recordings are sampled
at 42 kHz with 16-bit resolution and are annotated with
six emotion labels. These labels capture both positive and
negative affective states, as well as emotional intensity.

4.2. Metrics
For the experimental evaluation, we report both Accuracy
and Macro F1 score. Since the datasets are imbalanced,
the macro F1 score offers a more reliable assessment of
the model’s performance across all classes.

1https://www.openslr.org/99/

4.3. Experimental Details
All experiments were conducted using a consistent setup
across datasets. Each dataset was split into training, vali-
dation, and test sets, with 80% of the audio samples used
for training, 10% for validation, and the remaining 10%
for testing.

The Large Speech Models evaluated in this study in-
clude: Whisper Tiny2, Whisper Base3, Whisper Small4,
HuBERT Base5, WavLM Base Plus6, and Wav2Vec2 Base7.

Training was performed for 50 epochs with the follow-
ing hyperparameters: an initial learning rate of 1e−4,
weight decay of 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, and
𝜖 = 1e−8 for the Adam optimizer. A batch size of 16
was used along with a gradient accumulation step of 2.

All experiments were executed on a single NVIDIA
A100 GPU.

4.4. Results
4.4.1. Linear Probing on Large Speech Models

To compare the Large Speech Models introduced in Sec-
tion 3.1, we adopt a linear probing setup where the back-
bone ℬ is kept frozen, and only the classifier 𝒞 is trained.
In this configuration, each model—Wav2Vec 2.0, HuBERT,
WavLM, and Whisper—is used purely as a feature extrac-
tor for the Non-Verbal Vocalization task. This approach
allows us to evaluate the extent to which task-relevant
representations are already captured in the pre-trained
models.

Table 1 reports the performance of each model across
all datasets, using Accuracy and Macro F1 as evaluation
metrics. Results indicate that Wav2Vec 2.0, HuBERT, and

2https://huggingface.co/openai/whisper-tiny
3https://huggingface.co/openai/whisper-base
4https://huggingface.co/openai/whisper-small
5https://huggingface.co/facebook/hubert-base-ls960
6https://huggingface.co/microsoft/wavlm-base-plus
7https://huggingface.co/facebook/wav2vec2-base

https://www.openslr.org/99/
https://huggingface.co/openai/whisper-tiny
https://huggingface.co/openai/whisper-base
https://huggingface.co/openai/whisper-small
https://huggingface.co/facebook/hubert-base-ls960
https://huggingface.co/microsoft/wavlm-base-plus
https://huggingface.co/facebook/wav2vec2-base


Table 2
Comparison of PEFT strategies (LoRA, Adapter, Prompt Tuning) applied to Whisper models. The "Frozen" setting refers to
linear probing, where the backbone remains fixed during training. For each model and dataset, the best-performing PEFT
method is highlighted in gray.

Model Method
ASVP ESD CNVVE Nonverbal ReCanVo ViVAE
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Whisper Tiny

Frozen 54.75 38.81 80.43 81.01 45.21 44.09 44.50 35.95 36.81 31.75
LoRA 65.19 54.77 96.74 96.77 56.16 55.64 58.60 52.89 44.79 42.48
Adapter 58.90 43.64 88.04 87.90 52.05 48.75 50.08 40.22 35.58 33.16
Prompt Tuning 57.83 41.49 66.30 65.80 52.05 42.56 54.88 46.64 33.74 29.52

Whisper Base

Frozen 59.17 45.06 84.78 84.98 57.53 57.21 45.74 37.31 38.04 36.86
LoRA 69.21 58.96 97.83 97.87 73.97 74.30 59.84 53.25 47.85 47.43
Adapter 64.39 55.54 90.22 90.43 75.34 75.48 54.26 50.67 39.88 39.38
Prompt Tuning 64.12 49.77 77.17 77.62 39.73 34.62 53.18 43.42 36.20 33.12

Whisper Small

Frozen 61.98 46.32 73.91 72.97 57.53 56.49 45.58 35.77 38.04 33.58
LoRA 72.16 64.17 100.00 100.00 68.49 66.79 58.29 53.72 52.76 52.70
Adapter 72.16 63.69 85.87 85.94 78.08 78.48 56.90 54.63 40.49 39.20
Prompt Tuning 70.28 60.97 90.22 90.48 61.64 60.82 56.74 49.44 46.01 44.60

WavLM consistently underperform compared to Whisper,
which achieves superior results across all datasets and
model sizes (Tiny, Base, and Small).

Notably, the Whisper Base model delivers the best over-
all performance except on the ASVP-ESD dataset, where
Whisper Small slightly outperforms it with a Macro F1
score of 46.32 compared to 45.06 achieved by Whisper
Base.

4.4.2. Effect of Parameter-Efficient Fine-Tuning

For evaluating Parameter-Efficient Fine-Tuning (PEFT)
techniques, we focus on Whisper models, which demon-
strated the strongest performance in the previous section.
Table 2 presents the results across different fine-tuning
strategies applied to Whisper: Frozen Backbone, LoRA,
Adapters, and Prompt Tuning.

Consistent with prior findings in audio classification
tasks [26], LoRA emerges as the most effective PEFT
method across various datasets and model sizes. How-
ever, an exception is observed in the Non-Verbal Vocal-
ization dataset, where Adapters achieve superior perfor-
mance for both the Whisper Base and Small models.

LoRA’s strength lies in its ability to efficiently intro-
duce minimal task-specific parameters while selectively
modeling the non-verbal specific update ∆𝑊 , allowing it
to effectively integrate pre-trained knowledge with new
task-specific information.

4.4.3. Analysis of Transformer Layers

This subsection examines the contribution of each Trans-
former encoder layer within the Whisper backbone to
the Non-Verbal Vocalization task. We concentrate on the

Whisper model, given its superior performance as shown
in Table 1.

For this analysis, we leverage the learned linear prob-
ing weights 𝑤1, . . . , 𝑤𝐿 corresponding to the 𝐿 Trans-
former layers of the Whisper model. Figure 2 presents
the average layer weights across all five datasets used in
this study. We observe a consistent trend where deeper
layers receive higher weights, indicating that features
critical to non-verbal vocalizations are primarily encoded
in the later layers. This observation is consistent with
previous findings in Speech Emotion Recognition (SER)
[32].

More specifically, the layers with the greatest influence
vary by Whisper variant: layers 4 and 5 for Whisper Tiny,
layers 5, 6, and 7 for Whisper Base, and layers 8 through
13 for Whisper Small.

4.4.4. Optimizing PEFT via Layer Importance

In Section 4.4.2, we applied PEFT techniques uniformly
across all Whisper layers, without considering their rela-
tive importance. However, as observed in the previous
section, different layers contribute unevenly to the Non-
Verbal Vocalization task. Therefore, in this subsection, we
investigate whether the effectiveness of PEFT depends
on layer importance, and if focusing on specific layers
can further reduce adaptation parameters.

Table 3 presents different strategies for applying LoRA
to Whisper models, as LoRA showed the best perfor-
mance in most cases. For each model, LoRA refers to
applying the technique to all Transformer layers, LoRA[-]
applies LoRA only to the less important layers, and
LoRA[+] applies it exclusively to the important layers,
as determined in Section 4.4.3.



Figure 2: Layer importance scores normalized to the range [0, 1] for Whisper Tiny, Base, and Small models. The importance
values are averaged across all Non-Verbal Vocalization datasets. Darker shades correspond to higher importance.

Table 3
Effect of applying LoRA to different Transformer layers according to their importance for the Non-Verbal Vocalization task.
LoRA[-] denotes applying LoRA exclusively to less important layers, while LoRA[+] applies it only to important layers. The
best performance for each model and dataset is highlighted in gray, and the second best is underlined.

Model Method
ASVP ESD CNVVE Nonverbal ReCanVo ViVAE
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Whisper Tiny
LoRA 65.19 54.77 96.74 96.77 56.16 55.64 58.60 52.89 44.71 42.12
LoRA [-] 64.93 52.56 95.65 95.66 63.01 62.67 55.04 49.34 44.79 42.48
LoRA [+] 57.97 41.39 83.7 83.72 41.1 40.33 45.27 37.45 39.88 38.12

Whisper Base
LoRA 69.21 58.96 97.83 97.87 73.97 74.30 59.84 53.25 47.85 47.43
LoRA [-] 68.81 56.43 97.83 97.81 73.97 74.41 60.0 56.62 44.79 44.6
LoRA [+] 62.25 48.08 84.78 85.18 58.9 59.27 52.25 44.14 44.17 42.43

Whisper Small
LoRA 72.16 64.17 100.00 100.00 68.49 66.79 58.29 53.72 52.76 52.70
LoRA [-] 73.90 64.43 93.48 93.51 68.49 65.92 55.04 49.34 52.56 52.45
LoRA [+] 68.67 56.83 93.48 93.55 69.86 68.70 45.27 37.45 45.60 46.21

Overall, we find that full LoRA adaptation typically
yields the best results, followed by LoRA[-]. This sug-
gests that adapting the less important layers has a greater
positive impact than focusing solely on the important
layers, for which performance is often significantly lower.
Although this may seem counterintuitive, we hypothe-
size that adaptation is more necessary where the network
retains less prior knowledge relevant to the task. Impor-
tant layers already encode useful features, thus requiring
less adjustment, while ignoring the less important layers
limits the model’s adaptability.

Hence, we propose that focusing on the less impor-
tant layers is more beneficial than concentrating exclu-
sively on the important ones. This insight offers valuable
guidance for future work aimed at improving PEFT tech-
niques by targeting the parts of the network that need
the most adaptation.

5. Conclusion
In this work, we investigated the adaptability of Large
Speech Models (LSMs) to Non-Verbal Vocalization (NVV)

tasks using both linear probing and Parameter-Efficient
Fine-Tuning (PEFT) techniques. Our experimental results
demonstrate that Whisper models consistently outper-
form Wav2Vec 2.0, HuBERT, and WavLM across multiple
NVV datasets.

Furthermore, we observe that applying PEFT methods
significantly improves performance, with LoRA emerg-
ing as the most effective strategy compared to Adapters
and Prompt Tuning. Through a detailed analysis of the
Transformer layer weights in Whisper models, we find
that non-verbal information is predominantly captured
in the later layers.

Interestingly, we discover that fine-tuning only these
later layers yields limited gains compared to adapting
the layers that initially contain less non-verbal knowl-
edge. We hypothesize that this is because the layers with
less task-relevant information require a larger degree of
adaptation to bridge the knowledge gap. This observa-
tion suggests a valuable pathway for optimizing PEFT
methods by selectively targeting particular transformer
layers based on the knowledge they embed, potentially
minimizing the need for additional task-specific parame-



ters even further.
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