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Abstract
Sustainability reports are often aligned with frameworks such as the Global Reporting Initiative (GRI) and the Sustainable

Development Goals (SDGs), but large-scale, paragraph-level annotation remains a challenge. This paper introduces a fully

automated pipeline that generates weak supervision by linking report paragraphs to GRI and SDG categories using structured

content indices, official GRI-SDG mappings, and semantic similarity scoring. To mitigate the noise inherent in automatic

annotation, we employ an instruction-tuned large language model (LLaMA 3.1) to filter assigned labels based on paragraph

relevance. We evaluate the quality of our annotations through downstream SDG classification tasks on the OSDG Community

Dataset, showing that LLM-based filtering aligns closely with human consensus and significantly improves model performance.

Our results demonstrate that combining pruned, automatically annotated data with human-labeled examples leads to more

accurate and robust SDG classification, supporting scalable, interpretable sustainability analysis.
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1. Introduction
As the demand for transparent and accountable sustain-

ability reporting continues to grow, organizations are

increasingly expected to align their disclosures with well-

established frameworks such as the Sustainable Devel-

opment Goals (SDGs) [1], Global Reporting Initiative

(GRI) [2], and Environmental, Social, and Governance

(ESG) [3].

These frameworks provide the foundation for consis-

tent and comparable sustainability metrics across sectors.

However, sustainability reports are typically lengthy, un-

structured PDF documents that blend qualitative narra-

tives with quantitative data, making it challenging to

extract meaningful insights, particularly at scale [4].

At the same time, the rise of Large Language Mod-

els (LLMs) has opened new avenues for automating and

improving the quality of sustainability reporting. From

extracting structured information to verifying claims and

detecting inconsistencies, LLMs are now central to ad-

vancing natural language processing in this domain [5].

Annotating sustainability reports with SDG and GRI

labels is essential for enabling downstream tasks such as

benchmarking, automated scoring, and document clas-

sification. Structured annotation also facilitates cross-
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document analysis by aligning content across diverse

reports and organizations.

Public efforts like the OSDG Community Dataset
1

pro-

vide valuable manual SDG annotations for policy doc-

uments and publication abstracts [6]; however, these

resources remain limited in scope and are expensive to

expand.

Recent work has addressed the limitations of man-

ual sustainability annotation by developing automatic

methods for labeling texts with SDG, GRI, and ESG cate-

gories [7, 2]. Building on this line of research, we propose

an unsupervised annotation pipeline aimed at reducing

both the cost and subjectivity of manual labeling. Our

approach leverages GRI content indices, which serve as

structured metadata in sustainability reports, linking dis-

closure topics to specific pages [8]. While these indices

provide page-level associations for GRI standards, the

actual correspondence at the paragraph level remains un-

known; furthermore, we also seek to associate relevant

SDG categories with each paragraph.

For example, consider the following excerpt from

Merck’s recent sustainability report: “We promote equal-
ity, fairness, inclusion, and tolerance in the workplace by
participating in initiatives such as the UN Women’s Em-
powerment Principles and UN Global Compact’s Target
Gender Equality Programme.” Through our pipeline, this

paragraph can be automatically linked to the following

categories:

• SDG 5 (Gender): “Achieve gender equality and
empower women.”

• GRI 405 (Diversity and Equal Opportunity),

specifically disclosure GRI 405-2: “Ratio of basic
1
https://github.com/osdg-ai/osdg-data

mailto:seyedalireza.mousaviananaraki@students.uniroma2.eu
mailto:croce@info.uniroma2.it
mailto:basili@info.uniroma2.it
https://orcid.org/0009-0007-1044-9978
https://orcid.org/0000-0001-9111-1950
https://orcid.org/0000-0001-5140-0694
https://creativecommons.org/licenses/by/4.0
https://github.com/osdg-ai/osdg-data


salary and remuneration of women to men.”

This example illustrates how individual report para-

graphs can be meaningfully aligned with both the SDG

and GRI frameworks; however, performing this mapping

at scale is non-trivial. The full task involves 17 SDGs and

33 GRI standard codes (each with multiple disclosures),

yielding hundreds of potential (GRI, SDG) combina-

tions and significant ambiguity in narrative text. Address-

ing this challenge requires a systematic approach that

can constrain the search space while preserving semantic

relevance.

Our method bridges the gap between structured sus-

tainability frameworks and unstructured report narra-

tives, enabling large-scale and systematic annotation of

disclosures. Concretely, we restrict the annotation search

space by focusing on report pages linked to GRI standards

in the content index, and further constrain possible anno-

tations using established mappings between GRI codes

and SDGs. This substantially reduces ambiguity and the

combinatorial complexity inherent in considering all pos-

sible code pairs. To assign labels at the paragraph level,

we compute semantic similarity between each paragraph

and the textual definitions of GRI disclosures and SDG

targets, using pre-trained sentence encoders [9, 10, 11].

This allows us to rank and select the most plausible (GRI,

SDG) annotation pairs, resulting in a high-confidence,

automatically annotated dataset.

Despite these constraints, unsupervised annotation

methods—especially those based on bootstrapping and se-

mantic similarity—can introduce noisy or weakly aligned

labels. To address this, we propose a pruning strategy

that further refines annotation quality. Specifically, we

employ an instruction-tuned large language model (LLM),

such as LLaMA 3.1 [12], to assess the contextual fit of

each paragraph-label pair. The model is prompted to

answer, in a binary fashion, whether the proposed an-

notation is relevant to the given paragraph. This step

filters out misaligned pairs and improves the reliability of

the final dataset for downstream sustainability analysis.

While our implementation uses LLaMA 3.1, the approach

is compatible with other instruction-tuned LLMs.

Directly assessing the quality of unsupervised annota-

tions is inherently challenging due to the lack of ground-

truth labels at scale. To address this, we adopt an indirect

evaluation strategy: we train a supervised classifier on

our pruned automatically annotated dataset and assess

its performance on a well-established benchmark, the

OSDG Community Dataset [6]. Our working hypothesis

is that if the inclusion of pruned automatically annotated

data leads to improved classification performance on the

OSDG benchmark, then these data contribute useful in-

formation.
2

Preliminary results confirm that supplement-

2
Although our method generates both SDG and GRI labels, we focus

on SDG evaluation in this work. Joint assessment of SDG and GRI

ing human-annotated data with pruned automatically

annotated examples consistently improves classification

accuracy, particularly for challenging or ambiguous texts.

We further evaluate the effectiveness of our pruning

strategy through two complementary analyses. First, we

leverage the structure of the OSDG Community Dataset,

in which each text is associated not only with an SDG

label but also with an agreement score, reflecting the pro-

portion of annotators who endorsed the assigned label.

By applying our LLM-based filtering method to OSDG,

we examine the correlation between human consensus

and the LLM’s filtering decisions. Intuitively, a reliable

pruning system should tend to retain annotations with

high human agreement and filter more aggressively when

annotator consensus is low, as these instances are more

likely to be ambiguous or noisy. Our results show a clear

alignment: paragraphs with high agreement scores are

more frequently retained, while those with lower con-

sensus are more likely to be discarded. Inspired by this

analysis, we also examine the pruning behavior on au-

tomatically annotated data. We find a consistent trend:

as the semantic similarity between a paragraph and its

paired GRI-SDG labels increases, a larger proportion of

annotations is retained. This suggests that LLaMA’s fil-

tering decisions are guided by semantic alignment, rein-

forcing the effectiveness of our similarity-based scoring

approach for assessing label relevance.

Second, we directly compare downstream performance

when training models on data with and without LLM-

based filtering. Across all configurations, we observe that

pruning improves overall classification accuracy. These

findings suggest that the pruning step not only aligns

with human judgments but also consistently enhances

the utility of the resulting training data for sustainability

text classification.

The remainder of this paper is organized as follows:

Section 2 reviews the relevant literature. Section 3 in-

troduces our automatic annotating and pruning method-

ology. Section 4 outlines the experimental setup and

presents our evaluation results. Finally, Section 5 con-

cludes the paper and discusses directions for future re-

search.

2. Related Work
Sustainability Reporting Frameworks. Sustainabil-

ity reporting is increasingly guided by global frame-

works such as the United Nations Sustainable Develop-

ment Goals (SDGs) [1], the Global Reporting Initiative

(GRI)
3

, and Environmental, Social, and Governance (ESG)

principles [3]. The 2030 Agenda outlines 17 SDGs and

169 targets addressing major global development chal-

annotations is left for future research.

3
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lenges [13], while the GRI, established in 1997, offers a

structured framework for reporting economic, environ-

mental, and social impacts [2]. It provides standardized

disclosures—both required and recommended—that help

organizations systematically communicate their contri-

butions. To support SDG integration, the Action Platform

Reporting on the SDGs
4

, in collaboration with GRI, offers

a database that maps SDG targets to specific GRI codes

and disclosures, enabling companies to identify relevant

reporting items and align strategic goals with operational

metrics.

Large Language Models in Sustainability Reporting
Large Language Models (LLMs) have become powerful

tools in natural language processing, offering innovative

solutions to longstanding challenges in sustainability

reporting. Their high accuracy and adaptability make

them well-suited for extracting structured data, perform-

ing textual analysis, and identifying misleading green

claims [5].

LLMs are typically categorized into three main types

based on their neural architecture: encoder-only, decoder-

only, and encoder-decoder models [14].

Encoder-only models, such as BERT [15], focus on

encoding the input text into rich contextual represen-

tations using self-attention mechanisms. These mod-

els are especially effective for classification and inter-

pretive tasks like sentiment analysis and named entity

recognition. These models dominate sustainability NLP

applications due to their high performance on classifi-

cation tasks. They have been widely used for aligning

corporate texts with SDGs [16, 17, 18], GRI [19], and

ESG [20, 21, 22]. Models like BERT, RoBERTa, SBERT,

MiniLM, and DistilBERT are frequently fine-tuned to

extract structured insights and detect misleading green

claims using ClimateBERT [23] and MacBERT [24]. For

example, ESG-KIBERT [20] employs an encoder-only ar-

chitecture specifically designed for industry-specific ESG

evaluation, demonstrating how domain adaptation can

improve the performance of deep language models in

sustainability contexts.

Decoder-only models, such as LLaMA [12], operate

auto-regressively by predicting one token at a time con-

ditioned on prior outputs. This makes them suitable for

generative tasks such as text completion, summarization,

and dialogue generation. Recent studies underscore the

growing role of decoder-only models in sustainability

reporting, particularly through their integration with

retrieval-augmented generation (RAG) techniques [25],

as demonstrated in ESG applications by Bronzini et al.

[26] and Zou et al. [3]. Additionally, Jain et al. [27] high-

lighted the effectiveness of GPT-3.5 in addressing ESG-

4
https://www.globalreporting.org/reporting-support/

goals-and-targets-database/

related prompts and identifying nuanced sustainability

issues.

Encoder-decoder models like BART [28] combine

text understanding and generation, making them well-

suited for complex tasks such as summarization. Though

less commonly used, they have proven effective in sus-

tainability reporting—e.g., BART was used for SDG multi-

label categorization [29].

Following the trends outlined above, our approach

assigns task-specific roles to decoder-only and encoder-

only LLMs based on their architectural strengths. We

use LLaMA 3.1—an instruction-tuned decoder-only

model—to filter noisy or weakly aligned GRI-SDG an-

notations through generative prompting, guided by an

embedding-based similarity scoring process. Specifically,

we use a pre-trained MpNet model to compute alignment

scores between each paragraph and its associated GRI-

SDG label descriptions, allowing us to generate more

semantically grounded annotations by prioritizing la-

bel pairs with the highest similarity. For downstream

classification, we fine-tune a BERT-based encoder model

for multi-label SDG prediction, capitalizing on its effec-

tiveness in structured, discriminative tasks. This design

reflects a practical alignment between model capabilities

and task requirements in the context of sustainability

reporting. Moreover, by improving the quality of both

human and automatically annotated data, our approach

contributes to more reliable alignment with established

reporting standards such as the SDGs and GRI, thereby

supporting more transparent and accountable sustain-

ability disclosures.

3. Automatic Paragraph
Annotation via Structured
Indices, Semantic Similarity,
and LLM Filtering

We present a multi-step pipeline for automatically anno-

tating paragraphs from sustainability reports with both

GRI (Global Reporting Initiative) and SDG (Sustainable

Development Goals) labels. The process leverages docu-

ment structure, official mappings, and semantic similarity,

with a final human-like filter based on a large language

model.

Paragraph Segmentation and Preprocessing. Each

report is parsed with a layout-aware tool (e.g., PyMuPDF5

),

extracting all text blocks and filtering out headers, foot-

ers, and fragments. Only blocks of at least 20 words are

retained as candidate paragraphs.

5
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For example, a typical extracted paragraph might be:

“In 2023, CompanyX reduced its greenhouse gas emissions
by 15% by switching to renewable energy sources. The
organization remains committed to transparent reporting
of its climate targets and actions.”

Generating Candidate and Alternative Labels.
Most reports include a GRI content index, a table authored

by the company that indicates, for each GRI disclosure

code (e.g., GRI 305: Emissions, GRI 302: Energy),

the specific pages where the disclosure is addressed.

For each paragraph 𝑝 occurring on page 𝜋, we define:

• The candidate set as all GRI codes explicitly

linked to 𝜋 via the content index.

• The alternative set as all remaining GRI codes

not mentioned in the index for 𝜋, but potentially

relevant based on semantic content.

Continuing the example, suppose the GRI content in-

dex indicates that the pages containing the paragraph

above refer to GRI 305 (Emissions) and GRI 302 (En-

ergy). These two codes are included in the candidate set
for the paragraph, as they are explicitly claimed by the

report on that page. All remaining GRI codes—among

the approximately 33 topical standards defined in the

GRI framework—are considered part of the alternative
set. These alternatives are not mentioned in the content

index for this page, but may still be semantically relevant

to the paragraph based on its content. Note that, due

to the broad and multi-faceted nature of sustainability

topics, the content index is not expected to capture all

relevant GRI standards for each page. It typically high-

lights the main disclosures, while secondary or nuanced

themes may be omitted. By considering both the candi-

date set (directly indexed codes) and the alternative set

(other potentially relevant codes), our approach accounts

for both explicit priorities and additional associations

present in the narrative.

Expansion to SDG Pairs via Official Mapping. Each

GRI code captures a specific disclosure standard (e.g., en-

ergy consumption, gender pay equality), while each SDG
describes a broader societal goal (e.g., SDG 7: Affordable

and Clean Energy; SDG 5: Gender Equality). To bridge

these conceptual levels in a principled way, we use the

official mapping
6 ℳ, which links each GRI code only to

semantically relevant SDG targets.

This mapping is essential for two reasons: (i) it

avoids generating irrelevant or misleading (GRI, SDG)
pairs—since not every combination is meaningful in prac-

tice (e.g., GRI 305: Emissions is unrelated to SDG 4:

6
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Quality Education)—and (ii) it guarantees that down-

stream semantic similarity scoring is only performed

between a paragraph and label pairs with a recognized

conceptual connection, thus improving interpretability

and actionability for sustainability analysis.

Given a paragraph 𝑝, we use its associated GRI
codes—those directly referenced in the content index

(candidate set) and all other codes not mentioned (alter-

native set)—to generate all valid triples (𝑝, 𝑔, 𝑠), where

𝑠 ∈ ℳ(𝑔). For example, as above:

• GRI 305 maps to SDG 13 (Climate Action),

• GRI 302 maps to both SDG 13 and SDG 7 (Af-

fordable and Clean Energy).

This produces two filtered sets of candidate triples:

those based on content-indexed GRI codes, and those

based on alternative codes. For the running example, the

triples derived from the content index are:

• (paragraph, GRI 305, SDG 13),

• (paragraph, GRI 302, SDG 13),

• (paragraph, GRI 302, SDG 7).

At this stage, all generated triples are semantically plau-

sible and ready for embedding-based similarity scoring.

Semantic Similarity Ranking. Even after filtering

out irrelevant combinations via the official GRI→SDG
mapping, each paragraph remains associated with a large

number of possible label pairs. We therefore rank all

remaining (paragraph, GRI, SDG) triples based on how

semantically aligned they are with the paragraph content.

To quantify alignment, we use a pre-trained sentence

encoder (MPNet [9]) to compute cosine similarities in

embedding space. For each triple, we consider the textual

description of the SDG target and all available disclosure

requirements associated with the GRI code. We define

the similarity score 𝜎(𝑝, 𝑔, 𝑠) as:

𝜎(𝑝, 𝑔, 𝑠) = max
𝑟∈𝑅𝑔

cos(e𝑝, e𝑟) ·max
𝑡∈𝑇𝑠

cos(e𝑝, e𝑡)

where e𝑝 is the embedding of the paragraph, 𝑅𝑔 is the

set of disclosure texts for GRI code 𝑔, and 𝑇𝑠 is the set

of textual definitions for SDG 𝑠 (typically the goal and

its targets). This formulation favors pairs for which both

components—GRI and SDG—are independently relevant

to the paragraph: if either component is weakly aligned,

the product score will be low. This reflects the intuition

that a good annotation should simultaneously satisfy

both frameworks. For example, suppose a paragraph

discusses emissions reduction due to renewable energy

adoption. We obtain:

• cos(paragraph, GRI 305) = 0.92 (strong

match with “Reduction of GHG emissions”),

https://www.globalreporting.org/reporting-support/goals-and-targets-database/
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• cos(paragraph, SDG 13) = 0.88 (climate ac-

tion),

• cos(paragraph, GRI 302) = 0.69 (energy re-

duction consumption),

• cos(paragraph, SDG 7) = 0.54 (clean energy).

The resulting joint scores are: (GRI 305, SDG 13): 0.92×
0.88 = 0.81, (GRI 302, SDG 13): 0.69 × 0.88 = 0.61,

(GRI 302, SDG 7): 0.69× 0.54 = 0.37.

Notably, we compute these scores for both candidate

and alternative triples. While candidate triples originate

from the GRI content index (i.e., the report explicitly

claims these topics are discussed on the page), alterna-

tive triples arise from GRI codes not mentioned in the

index. Though potentially less reliable, alternative labels

may capture omissions or relevant but unindexed con-

tent. Hence, if a triple from the alternative set obtains

a substantially higher semantic score than those in the

candidate set, it may signal that the original index missed

something. In this case, our strategy allows the model

to retain the best alternative triple. While semantic sim-

ilarity offers a useful initial filter, it may miss deeper

context or introduce noise. To address this, we add later

an LLM-based filtering step for more robust alignment.

Disambiguation Policies: Conservative and Permis-
sive. After ranking all (paragraph, GRI, SDG) triples by

joint semantic similarity, the final step is to select which

annotations to retain for each paragraph. This choice

must balance precision (avoiding spurious labels) with

recall (capturing genuine but possibly under-indexed con-

tent). We propose two complementary disambiguation

policies, which reflect different trade-offs between cover-

age and selectivity.

Conservative Policy: This policy is tailored for high-

precision applications, where false positives are espe-

cially costly. For each paragraph, we:

1. Identify the best-scoring candidate triple (i.e., de-

rived from the GRI codes listed in the report’s

index for the relevant page).

2. Identify the best-scoring alternative triple (i.e.,

derived from any other valid (GRI, SDG) pair for

the paragraph).

3. If the candidate triple’s score is greater than or

equal to the alternative’s, we retain only the can-

didate triple—reflecting high confidence in the

company’s index.

4. If the alternative triple has a higher score, we

return both the best candidate and the best alter-

native. This accounts for possible omissions or

underreporting in the index, while maintaining

interpretability.

In practice, this policy outputs either one or two annota-

tion triples per paragraph.

Permissive Policy: This policy is designed to maximize

recall and accommodate semantic ambiguity—useful for

exploratory analysis or downstream expert curation.

1. Find the candidate triple with the highest score

and set a threshold at half that value.

2. Retain up to two candidate triples whose scores

exceed this threshold (to account for ties or near-

equivalent topics).

3. Always include the best-scoring alternative triple,

regardless of its absolute score, ensuring that

strong semantic signals outside the index are

never discarded a priori.

As a result, this policy can return up to three triples (two

candidates plus one alternative) for a given paragraph,

allowing for richer, multi-label annotation. In summary,

the conservative policy favors precision, whereas the

permissive policy promotes recall and label diversity.

Final Filtering with LLM Relevance Assessment
While semantic similarity models are powerful for linking

text to structured concepts, they can sometimes overesti-

mate relevance—especially for vague, generic, or multi-

topic paragraphs. For example, a paragraph mentioning

“sustainable growth” could weakly match almost any

SDG, leading to noisy or spurious labels even after care-

ful mapping and scoring.

To further improve annotation quality, we add a fi-

nal “human-like” relevance check using a large language

model (LLM) such as LLaMA 3.1 Instruct. This step serves

two key purposes: i) it filters out weak, contextually in-

appropriate, or overly broad matches that the similarity-

based method might miss; ii) it simulates expert review

at scale, bringing richer contextual understanding and

nuanced judgment—skills typically seen in human anno-

tators—while maintaining automation and consistency.

For each retained (paragraph, GRI, SDG) triple, we con-

struct a structured prompt (shown in Figure 1) presenting

the paragraph and the official descriptions of both labels.

The LLM is asked to answer—based solely on the evi-

dence given—whether the label pair is truly relevant to

the paragraph content. Only those triples receiving a

“Yes” are included in the final dataset.

For instance, a paragraph describing the company’s

general commitment to “sustainable development” might

weakly match several SDGs and GRIs in embedding space,

but only a focused LLM assessment can determine if a spe-

cific (GRI, SDG) pair is truly justified by the text. In this

way, the LLM acts as a high-precision, scalable expert-in-

the-loop filter. This LLM-based filtering step significantly

reduces false positives, capturing complex connections

and subtle mismatches that even strong embedding mod-

els may overlook. In effect, it combines the scale and

speed of automated annotation with the contextual depth



You are a sustainability evaluation assistant. De-
cide if the following GRI–SDG pair is relevant to
the paragraph.

Paragraph: “Paragraph content here”

GRI [GRI Code]: GRI Description here
SDG [SDG Name]: SDG Description here

Only reply with one word: Yes or No.

Format:
Answer: Yes
(or)
Answer: No

Figure 1: LLM prompt for paragraph-level GRI–SDG rele-
vance filtering. The model is asked to decide, given the para-
graph and both label descriptions, if the label pair is truly
relevant. Only a one-word response (Yes or No) is permitted.

of human reasoning, resulting in a cleaner, more trust-

worthy annotated dataset ready for downstream analysis

or model training.

4. Experimental Evaluation
We conduct a comprehensive experimental evaluation

to assess the effectiveness of our automatic annotation

pipeline and its LLM-based filtering component. Our

analysis focuses on two main questions: (i) does LLM fil-

tering produce label decisions that align with human con-

sensus? and (ii) how do different label selection policies

(conservative vs. permissive) and LLM filtering impact

the quality and utility of the resulting annotated data for

downstream SDG classification?

4.1. LLM Filtering and Human Consensus
on OSDG-CD

A natural concern when introducing LLM-based filter-

ing into any annotation pipeline is whether the model’s

binary “Yes/No” relevance judgments are in fact consis-

tent with human annotation practices. While LLMs are

increasingly adopted as automated evaluators or assis-

tants, there is limited empirical evidence on how closely

their filtering behavior tracks with actual human agree-

ment—particularly in specialized domains such as sus-

tainability. To address this, we leverage the OSDG Com-

munity Dataset (OSDG-CD), a large-scale benchmark in

which each paragraph-SDG pair is annotated not only

with the assigned label, but also with an explicit agree-

ment score reflecting the proportion of human annota-

tors who supported the label assignment. This agreement

score provides a direct, interpretable measure of human

consensus, ranging from 0.1 (highly ambiguous or dis-

puted cases) to 1.0 (full agreement among annotators).

We use the LLaMA 3.1 Instruct model as a post-hoc filter:

for each paragraph-SDG pair in OSDG-CD, we prompt

the model to decide if the label is relevant to the para-

graph, using the same structured format adopted in our

main pipeline. We then analyze the fraction of examples

retained (“Yes” by the LLM) across different agreement

intervals.

Table 1
Distribution of agreement scores in OSDG-CD.

Agreement Interval Frequency

[0.1, 0.3) 2,321
[0.3, 0.5) 5,249
[0.5, 0.7) 7,064
[0.7, 1) 6,041

1.0 14,922

38%

58%

71%

84%
90%

30%

40%

50%

60%

70%

80%

90%

100%

[01-0.3) [0.3-0.5) [0.5-0.7) [0.7-1) 1

OSDG Agreement Levels

Figure 2: LLM filtering aligns with human agreement: reten-
tion rates (“Yes” answers) by the LLaMA 3.1 model increase
with human consensus in the OSDG-CD dataset.

Table 1 reports the frequency distribution of samples

across agreement bins, and Figure 2 visualizes the key re-

sult: the likelihood of a sample being retained by the LLM

filter increases monotonically with human agreement.

In other words, pairs with high human consensus are

almost always preserved by the model, while those with

low or disputed agreement are more frequently filtered

out. This positive correlation provides strong evidence

that LLM-based filtering is not arbitrary, but instead cap-

tures a notion of relevance that closely mirrors collective

human judgment.

This result has two important implications. First,

it provides empirical support for using LLMs as scal-

able, “expert-in-the-loop” filters for semantic annotation,

even in cases where manual adjudication would be pro-

hibitively expensive. Second, it suggests that LLMs can

help mitigate annotation noise in weakly or ambiguously

labeled data—removing many of the examples that hu-

mans themselves would likely judge as borderline or

unreliable. Overall, this agreement-guided analysis not

only validates our specific use of LLM filtering in the



construction of GRI-SDG training data, but also suggests

a broader role for LLMs as automatic quality controllers

in human-in-the-loop NLP pipelines.

4.2. Assessing Labeling Strategies for
Automatic Paragraph Annotation

Experimental Setup. To systematically evaluate our

annotation pipeline, we applied it to a curated corpus of

30 sustainability reports spanning 10 sectors and 3,663

pages. After preprocessing and paragraph segmentation,

we obtained 19,133 candidate paragraphs, of which 10,303

were indexed by company-provided GRI content indices

and thus eligible for annotation. Annotation followed

the multi-step procedure described in Section 3: we gen-

erated (GRI, SDG) label pairs using the official mapping,

scored their semantic similarity, and selected final annota-

tions according to either the conservative (high-precision,

at most one or two triples per paragraph) or permissive

(higher recall, up to three triples) policy.

Applying the conservative policy yielded 17,216 label

pairs initially, which were reduced to 4,558 after LLM-

based relevance filtering. The permissive policy produced

a higher initial volume of annotations (30,647 label pairs),

which was pruned to 7,425 after filtering with LLaMA

3.1 Instruct. This substantial reduction confirms the im-

pact of the LLM-based step in filtering out weak or noisy

annotations, ultimately improving the quality and reli-

ability of the final labeled dataset. For evaluation, we

leveraged the OSDG Community Dataset (OSDG-CD),

which contains single-label SDG assignments per para-

graph, validated by crowdsourced agreement scores. To

ensure reliability, we defined two test splits: a Simple
set (agreement = 1.0, fully unambiguous) and a Com-
plex set (0.7 ≤ agreement ≤ 1.0). All models were

trained in a multi-label setting, but evaluated using only

the highest-scoring prediction per paragraph to match

the OSDG single-label ground truth. As a baseline, we

used a BERT-based classifier (bert-base-cased). We

used a standard binary cross-entropy loss for multi-label

classification over the full label set, treating each label

independently during training. The model was trained

with an effective batch size of 16 (via gradient accumu-

lation over 4 mini-batches of size 4), using the AdamW

optimizer with a learning rate of 2× 10−5
, weight decay

of 0.1, and a linear learning rate scheduler with a warmup

ratio of 0.1, for a total of 5 training epochs. Accuracy is

defined as the percentage of paragraphs for which the

top predicted label matches the ground truth; since the

OSDG test set provides only one true label per paragraph,

this top-1 accuracy measure is equivalent to precision,

recall, and F1-score, which are therefore omitted.

Does LLM Filtering Improve Automatically An-
notated Training Data? Our first experiment tests

whether LLM-based filtering effectively improves the util-

ity of automatically annotated data, and how the choice

of annotation policy (conservative vs. permissive) im-

pacts downstream model performance.

Table 2
Accuracy on OSDG test sets with different training sets: con-
servative vs permissive policy, before and after LLM filtering.

Training Simple Complex

Conservative 0.762 0.737
Conservative + LLM 0.783 0.752
Permissive 0.688 0.660
Permissive + LLM 0.726 0.695

Results (Table 2) indicate that both policies benefit

from LLM filtering, but to different extents. The con-

servative policy (high-precision, fewer labels) already

yields reasonably strong results, but applying LLM fil-

tering further increases accuracy by removing residual

false positives. The permissive policy (higher recall, more

candidate triples per paragraph) initially introduces sub-

stantially more noise, as reflected in lower baseline ac-

curacy; however, LLM filtering provides a larger relative

improvement—yet, even after filtering, the permissive

setting still lags behind the conservative one in abso-

lute performance. This suggests that, while the LLM can

mitigate a large portion of annotation noise, excessive

over-labeling (as in the permissive setting) cannot be

fully corrected in post-processing, and some spurious as-

sociations may persist. In summary, LLM-based filtering

systematically improves the quality of automatically gen-

erated labels, especially in the presence of noisy or overly

broad candidate assignments. However, the conservative

policy remains preferable in settings where downstream

precision is paramount
7

.

Does Adding Automatically Annotated Data Bene-
fit Supervised Training? In a second experiment, we

assessed whether supplementing human-annotated data

(OSDG-CD) with LLM-pruned automatic annotations

yields tangible improvements in SDG classification.

Table 3
Accuracy on OSDG test sets with and without adding pruned
automatic data (Cons.: conservative, Perm.: permissive).

Training Simple Complex

OSDG (full) 0.917 0.907
OSDG + Cons. + LLM 0.921 0.910
OSDG + Perm. + LLM 0.919 0.909

7
Note that the test set requires a single SDG per paragraph, so we

evaluate our classifier by selecting only the top prediction. This

may not capture all relevant SDGs, especially for complex cases,

but gives a reasonable first estimate of performance.



Results in Table 3 show that, for both policies, adding

pruned automatic annotations to the OSDG training set

consistently increases accuracy on both simple and com-

plex test splits. While the gains are modest, they are

robust across settings, confirming that our pipeline pro-

duces useful complementary signal even in the presence

of expert-labeled data. As in the previous experiment,

the conservative policy remains more reliable, providing

slightly higher accuracy than the permissive policy; the

latter, despite contributing more examples, appears to

introduce a small amount of residual noise that is not

fully eliminated by LLM filtering.

Taken together, these findings support a dual conclu-

sion: (1) the automatic annotation pipeline is effective

for scalable SDG data generation, and (2) the interplay

between label selection policy and LLM-based filtering

is crucial for balancing coverage and precision. The con-

servative strategy, enhanced by LLM filtering, delivers

high-quality labels that boost supervised learning, while

the permissive strategy is valuable for recall-oriented

applications but requires careful calibration to avoid ex-

cessive noise.

4.3. Analysis of LLM Retention Decisions
on Automatically Annotated Data

Having established that the LLM-based filter is well

aligned with human consensus on the OSDG dataset

(Section 4.1), we next analyze how the LLM’s binary

relevance judgments interact with the underlying seman-

tic similarity scores in our full, automatically annotated

dataset. This provides a deeper understanding of whether

the LLM filter simply introduces an arbitrary bottleneck,

or if it systematically reinforces semantic quality.

We consider the product similarity score—the product

of cosine similarities between a paragraph and its asso-

ciated GRI and SDG descriptions (see Section 3)—as a

measure of semantic alignment for each candidate la-

bel. For every (paragraph,GRI, SDG) triple, we record

whether the LLM filter retained the annotation (“Yes”) or

discarded it (“No”). Table 4 reports the mean similarity

scores for retained and discarded samples, disaggregated

by both label type (Candidate, Alternative) and selection

policy (Conservative, Permissive).

As shown, the LLM filter systematically prefers to re-

tain labels with higher semantic similarity to the para-

graph, regardless of whether they are candidate or al-

ternative labels, and across both policies. The effect is

particularly pronounced for alternatives, which are only

kept when they exhibit a strong semantic match.

To further examine this relationship, we discretize the

similarity scores into bins and calculate, for each bin,

the proportion of samples retained by the LLM. Figure 3

presents these retention rates for the conservative (Top-

1) policy, separately for candidates, alternatives, and the

Table 4
Mean product similarity score for retained vs. discarded sam-
ples under conservative and permissive label selection.

Policy Category Retained Discarded

Conservative
Overall 0.434 0.321
Alternatives 0.463 0.351
Candidates 0.422 0.298

Permissive
Overall 0.414 0.308
Alternatives 0.456 0.353
Candidates 0.400 0.283

combined set. To ensure statistical significance, we only

report bins containing at least 700 samples. The thresh-

old of 700 samples was chosen empirically based on the

distribution of paragraph counts across prediction score

intervals. Specifically, we observed that the total number

of samples in the higher-confidence intervals—i.e., those

greater than 0.7 ((0.7-0.8], (0.8-0.9], (0.9-1])—was only 272

(227 + 40 + 5). Given such low sample sizes, reporting

performance metrics for these bins would risk statistical

instability and lack of representativeness. To mitigate

this, we selected 700 as a minimum cutoff to ensure that

each bin included in our analysis contains a sufficient

number of samples for reliable metric estimation. This

threshold balances coverage across confidence intervals

with the statistical reliability of the reported results.
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Figure 3: Proportion of (paragraph,GRI, SDG) triples re-
tained by the LLM filter as a function of product similarity
score, binned by intervals. Results are shown for candidate, al-
ternative, and all labels under the conservative (Top-1) policy.

The figure demonstrates a clear monotonic trend: as

the product similarity score increases, the probability of

retention by the LLM rises sharply. For scores below 0.3,

fewer than 20% of labels are retained, while for scores

above 0.6, the retention rate exceeds 60%. This pattern

holds for both candidates and alternatives, further sup-

porting the conclusion that the LLM acts as a semantic

relevance filter—amplifying the selectivity of the auto-

matic annotation pipeline and systematically favoring

labels with strong textual alignment.



In summary, these results indicate that our LLM-based

filtering mechanism is not merely an arbitrary post-

processing step, but an effective semantic validator: it

consistently prioritizes label assignments with robust

evidence in the paragraph text.

5. Conclusion and Future Work
This work presents a fully automated pipeline for large-

scale annotation of sustainability reports at paragraph

level, aligning text with both GRI disclosures and SDG tar-

gets. Leveraging structured metadata, official GRI-SDG

mappings, semantic similarity, and an LLM-based rele-

vance filter (LLaMA), our method offers an interpretable

and scalable alternative to manual annotation. The LLM

filter proves highly effective in reducing semantic noise

and producing annotations that closely match human

consensus.

Our experiments show that LLaMA-based filtering fa-

vors labels with high semantic similarity, aligns with

human judgments on the OSDG benchmark, and consis-

tently improves downstream SDG classification—even

when combined with expert-labeled data. While permis-

sive labeling increases coverage, it also adds noise that is

only partly corrected by LLM filtering.

This pipeline lays the foundation for more transparent

and data-driven sustainability analytics. Future research

will focus on several open challenges. First, we aim to

expand the LLM filter to provide natural language justi-

fications for its decisions, improving explainability and

facilitating expert validation. We also acknowledge that

scalability may become a limitation when applying our

pipeline to thousands of reports, particularly due to the

computational cost of LLM-based filtering; addressing

this bottleneck through optimization or distillation tech-

niques is a key direction for future work. Second, while

our current evaluation is primarily model-based, we plan

to conduct in-depth human studies, including manual val-

idation of high-confidence (GRI, SDG) pairs, and direct

comparisons with prior supervised approaches [16, 18],

especially regarding the annotation of GRI codes. Third,

we envision extending our framework to cover a wider ar-

ray of sustainability and ESG standards, as well as to sup-

port fine-grained analysis of the substance and quality of

sustainability reporting—such as distinguishing between

specific, verifiable disclosures and generic statements,

thus advancing automated detection of greenwashing.
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