
Is Multimodality still Required for Multimodal Machine
Translation? A case study on English and Italian
Elio Musacchio

1,2,*
, Lucia Siciliani

1
, Pierpaolo Basile

1
and Giovanni Semeraro

1

1Department of Computer Science, University of Bari Aldo Moro, Italy
2National PhD in Artificial Intelligence, University of Pisa, Italy

Abstract
Large Language Models (LLMs) have demonstrated remarkable capabilities in machine translation. A related task is multimodal

machine translation, where text is paired with an image. While intuition suggests that models supporting multimodal inputs

(e.g. Large Vision-Language Models or LVLMs) are essential for this task due to their image understanding, we hypothesize

that, in general, text contains several clues that might be enough for effective translation. In this work, we rigorously test both

LLMs and LVLMs on the multimodal machine translation task for the English and Italian languages, thoroughly analyzing

the impact of text and images on translation quality.
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1. Introduction
Large Language Models (LLMs) are being increasingly

leveraged in several Natural Language Processing (NLP)

tasks due to their impressive generalization capabilities

[1, 2]. Several studies have demonstrated that these mod-

els, trained on massive text corpora, can perform multiple

tasks without requiring further training. Among the var-

ious NLP challenges, Machine translation has always

stood as a fundamental benchmark, also for its practical

implications. In machine translation, given an input text,

the objective is to produce an equivalent output in an-

other target language. The translation must not only be

grammatically correct but also faithful in preserving the

semantics and the stylistic nuances of the original text.

Numerous studies have already evaluated the ability and

proficiency of LLMs in this task [3, 4].

However, despite the relevance of text-only transla-

tion, the related task of multimodal machine translation

(MMT) has attracted less attention. Its formulation is

similar to traditional machine translation, but the input

additionally includes an image associated with the text

(e.g. an image and its caption). It is thus straightforward

to understand why advances in this task have proceeded

more slowly: sufficiently large and high-quality image-

text corpora are notoriously more scarce than their text

counterparts. Another reason is that this task is more
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challenging because the image often contains crucial

clues and information necessary for understanding the

input text and its semantics, therefore the model or algo-

rithm must be capable of processing the additional visual

input to perform the translation task. Historically, early

research in MMT has typically relied on small, specialized

multimodal models [5, 6].

Although traditional Large Language Models (LLMs)

are limited to processing text and cannot process visual

inputs, making them seemingly unsuitable for MMT,

a new class of architectures known as Large Vision-

Language Models (LVLMs) has emerged to bridge the

gap the two modalities, extending LLMs to support both

textual and visual inputs. Despite the existence of LVLMs,

the rapid advancements in text-only LLMs have led to

wonder whether the additional visual input is essential

for effective multimodal machine translation. Intuitively,

if the source text is sufficiently descriptive, a powerful

LLM could already possess enough world knowledge and

language understanding capabilities to generate an accu-

rate translation without the visual input. For instance,

a well-crafted image caption can often be sufficient to

describe the most relevant aspects of the associated scene,

making it concise and meaningful. Indeed Futeral et al.

[6] leveraged a MMT model to resolve ambiguities within

the input text. However, in many cases, this approach

succeeds when the ambiguity is due to the low descrip-

tiveness of the input text. For example, in the sentence

"That’s lots of bucks!" without further qualifiers, it is

impossible to properly disambiguate the word "bucks",

which could refer to deer, dollars, or be a colloquial excla-

mation. This highlights that, most of the time, the main

challenge is represented by the vagueness or brevity of

the context provided by the text, rather than the limita-

tions of the model. Furthermore, one of the most promi-
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nent datasets for MMT, that is Multi30k [7], only provides

captions. We believe that this dataset is not enough to

evaluate the capabilities of models in the MMT task.

In light of this, we aim to investigate the impact of both

the additional visual input and the descriptiveness of the

textual input for multimodal machine translation in LLMs

and LVLMs. We conducted this study in both English

and Italian, using our knowledge of these languages to

carry out the study carefully. Hence, the contributions

of this work are the following:

• We extend an existing multimodal machine trans-

lation dataset to include the Italian language;

• We create a new multimodal machine translation

dataset for English and Italian, with a focus on

short texts consisting of only a few words;

• We benchmark several LLMs and LVLMs on both

datasets for this task, analyzing and studying the

impact of the input modalities on the output.

Furthermore, we release code and resources related to

this study
1

.

2. Related Works

2.1. Large Vision-Language Models
Early releases in open LLMs mainly focused on textual

processing and were tailored to the English language. For

example, the LLaMA 2 models [8], for which the language

distribution of the train set has been officially reported,

were extensively trained and tested on English text data

without any mechanism to support other modalities. In

light of this, several works started proposing solutions

to bridge this gap. The main idea was to leverage a pre-

trained LLM and extend it to an LVLM, therefore avoid-

ing the costly procedure of multimodal pre-training from

scratch. A well-known example is LLaVA [9], where vi-

sual embeddings are extracted from a pre-trained vision

encoder and projected into the latent space of the LLM.

This strategy has been widely adopted, and many mod-

ern LVLMs are based on this paradigm. Among these,

LVLMs supporting multiple languages include: Qwen 2.5

VL [10], Gemma 3 [11] and LLaMA 4 [12]. All of them

are LVLMs supporting modern strategies, for example,

Qwen 2.5 VL employs dynamic resolution to decrease the

number of visual tokens w.r.t. resolution of the input im-

age, while LLaMA Scout is based on a mixture-of-experts

architecture (i.e. tokens are handled by different layers

according to a routing function). Finally, all of these mod-

els have been extensively trained on a multimodal and

multilingual data mixture.

1
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2.2. Multimodal Machine Translation
The most used resource for MMT is Multi30k [7], a

dataset consisting of parallel image descriptions. The

dataset has been created starting from the Flickr30k

[13] dataset, which contains 31,014 images sourced from

Flickr and a large number of image captions obtained

through Amazon Turk. Multi30k extended the dataset

with professional manual translations from English to

German. It was then further extended to French by Elliott

et al. [14] and Czech by Barrault et al. [15]. The dataset

has become a reliable benchmark for MMT and has been

used in numerous works as their main dataset for experi-

mentation. Researchers have proposed several solutions

to tackle the challenges of the MMT task. Specifically, Yao

and Wan [5] developed a multimodal transformer model,

which employs a multimodal self-attention mechanism to

adjust the attention score of each word w.r.t. the contents

of the image. VGAMT [6] adapts a text-only encoder-

decoder machine translation model to multimodality by

incorporating the features of the image in the encoder-

side of the model and employing guided self-attention to

obtain better alignment between text and images. Soul-

Mix [16] leverages a manifold mixup method to mix the

predicted translation of several text-image pairs, where

the image is kept as is while the text is processed through

degradation schemes. To the best of our knowledge, there

are no works studying the effect of the granularity of text

in MMT using modern LVLMs supporting multilingual

inputs.

3. Problem Formulation
In MMT, the model is given an input comprising a text

in a specified source language 𝑡𝑙𝑎𝑛𝑔_𝑠𝑟𝑐 and an image 𝑖,
semantically related to the given text. The desired output

is a translated text in a target language 𝑡𝑙𝑎𝑛𝑔_𝑡𝑔𝑡. The ob-

jective is for 𝑡𝑙𝑎𝑛𝑔_𝑡𝑔𝑡 to be not only syntactically correct,

that is it has no grammatical errors in the target language,

but also accurately aligned with 𝑡𝑙𝑎𝑛𝑔_𝑠𝑟𝑐 both syntacti-

cally (ensuring all relevant words from the input text are

present in the output) and semantically (preserving the

original meaning of the input text).

As previously mentioned, research in multimodal ma-

chine translation has often focused on image captioning

datasets. A caption is a short description of the image

that meaningfully describes the most relevant aspects of

the image. However, we argue that, despite the caption

being a short text, the image does not provide additional

context w.r.t. text. This is because: 1) a good caption

already contains extensive information about the image;

2) the caption often contains enough words to allow for

proper translation without additional context. However,

if the text consists of only a few words, the task becomes

much more challenging. This is because, to perform an

https://github.com/swapUniba/MM-MT-ITA


Figure 1: Example of text-only machine translation from the MSCOCO and the Multi30k datasets. We perform text-only

machine translation using DeepL. In the first case, the limited textual content makes the text-only machine translation model

unable to provide an optimal translation. In the second case, the additional textual content enables the model to provide an

optimal translation even without providing the image as input.

optimal translation, the model is also required to under-

stand the meaning of each word in the input sentence.

Specifically, translating polysemous words requires addi-

tional context, either from the textual or visual modality.

We showcase this in Figure 1, where we present an ex-

ample of machine translation of two image-text pairs. In

the instance from the MSCOCO [17] dataset, the word

"remote" is translated as "remoto" (i.e. something that is

far away) rather than its proper translation, that is "tele-

comando". Due to the absence of substantial textual clues,

the model provides a translation that is not aligned w.r.t.

the contents of the image. In the second instance from the

Multi30K dataset, however, the caption is correctly trans-

lated and aligns well with the image’s contents. In this

case, the word "vest" is correctly translated to "giubbotto"

(i.e. a jacket), thanks to the additional words present in

the text. In light of this, we aim to understand the rela-

tionship between the granularity of the input text and

the associated image in multimodal machine translation.

To do so, we need to collect two different datasets, one

made of very short texts consisting of only a few words

and one made of image captions.

4. Dataset
In this section, we describe the datasets that will be used

for the experimentation. Specifically, we aim to test the

ability of LVLMs in MMT for two different types of in-

stances: 1) text containing a rich description of the image;

2) text containing only a few words. Going forward, we

will reference the former as "long" dataset and the latter

as "short" dataset.

4.1. Dataset Collection
For the "long" dataset, we collect the English 2016 Flickr

test set from the Multi30K dataset. Specifically, we lever-

age a version uploaded on HuggingFace. For the "short"

dataset, we collect lemmas from BabelNet [18]. BabelNet

is a semantic network organized according to a synset

hierarchy. A synset is a synonym set, containing all

possible words that can be associated with that concept.

Additionally, in BabelNet, each synset is linked with one

or more images, providing useful resources for multi-

modality. It also provides lemmas in multiple languages,

allowing access to the lemmas for all required languages.

In our case, we collect both the first lemma in English

and Italian, as well as the best image for each synset.

However, these datasets cannot be used directly after



collecting them as they are. In fact, Multi30K does not

provide labels in Italian, and BabelNet lemmas are not

precise translations from English to Italian and vice versa.

For example, the English lemma "economy of resources"

is paired with the Italian lemma "efficienza", which is not

a literary translation of the original text. In light of this,

we perform manual annotation for "long" dataset and

manual verification for the "short" dataset.

4.2. Dataset Annotation
For the "long" dataset, we begin by performing a prelimi-

nary Italian translation of the data with LLaMA 3.3 70B

Instruct, which helps reduce the editing overload. After

that, we manually check each translated instance and

correct any machine translation errors that are present

in the dataset. Specifically, we follow these guidelines

when correcting the translated text: 1) we use Italian

figures of speech whenever possible (e.g. we translate

"shirtless man" as "uomo a torso nudo" instead of "uomo

senza maglietta"); 2) we only keep English words when

they represent commonly used terms across languages

(e.g. we keep the word "cowboy" as is). For the "short"

dataset, we manually filter each pair of lemmas in Ital-

ian and English to include only those that are proper

translations of one another. After performing the previ-

ously described steps, we obtain the final versions of the

"long" and "short" datasets. The "long" dataset consists

of 1,000 instances, the same cardinality as the original

Multi30k dataset, while the "short" dataset consists of

400 instances.

5. Evaluation
In this section, we describe the evaluation setting that

has been considered for all models (e.g. generation strat-

egy), we discuss the obtained results and present some

interesting additional experiments.

Additionally, we aim to answer the following research

questions: 1) Are LVLMs capable of performing MMT for

both the "short" and "long" dataset? 2) Is performance

affected by the presence of the image in the input? 3)

Are LLMs as capable as LVLMs in MMT? 4) Does the

generation strategy impact the quality of MMT?

5.1. Evaluation Setting
We use the same metrics as the original Multi30K dataset

for the "long" dataset, namely BLEU and METEOR. Addi-

tionally, we also include COMET, since it has been widely

used in machine translation. For our short dataset, since

it consists of only a few words, we perform an exact

match, that is, we verify that the generated output is

identical to the ground truth label. However, to have a

more precise evaluation, we perform an exact match for

each possible lemma associated with the synset of the

instance. If at least one of the labels exactly matches the

generated output, the translation is considered correct.

For example, for the synset "bn:00109359a" with English

lemma "quiet" and Italian lemmas "tranquillo", "calmo",

"silenzioso", "quieto", the translation from English to Ital-

ian is correct as long as the generated output is one of

the Italian lemmas of the synset (and viceversa for trans-

lation from Italian to English). Thanks to the multiple

labels, we cover cases where the model may translate

the input lemma with a word that has the same meaning.

All models are evaluated using greedy decoding, which

makes the inference process reproducible and removes

any randomness from the outputs. In all cases, the chat

template associated with each model is used during infer-

ence. We consider the following models for evaluation:

Qwen 2.5 VL and LLaMA Scout. Both models support

multimodal and multilingual inputs. For Qwen 2.5 VL,

we consider the 3B, 7B and 72B checkpoints, while for

LLaMA Scout, we consider the only available checkpoint

(17B with 16 experts). Inference is performed locally

for Qwen 2.5 VL 3B and 7B, while we rely on a cloud

service
2

for Qwen 72B and LLaMA Scout. All models

are prompted using the following input strings if the

image associated to the text is provided: "Translate the

following text from [𝑠𝑟𝑐_𝑙𝑎𝑛𝑔] to [𝑡𝑔𝑡_𝑙𝑎𝑛𝑔]: "[TEXT]".

Use the image as additional context for the translation.

Provide only the translated text.", otherwise the input

string is "Translate the following text from 𝑠𝑟𝑐_𝑙𝑎𝑛𝑔 to

[𝑡𝑔𝑡_𝑙𝑎𝑛𝑔]: "[TEXT]". Provide only the translated text.".

[𝑠𝑟𝑐_𝑙𝑎𝑛𝑔] and [𝑡𝑔𝑡_𝑙𝑎𝑛𝑔] are placeholders for represen-

tative strings of the source and target languages; in this

case, they are either "English" or "Italian", while [TEXT]

is a placeholder for the text of the instance.

5.2. Results
We report results on the Multi30k test set in Table 1 while

results for the BabelNet test set can be found in table Ta-

ble 2. Overall, both the "long" and "short" datasets are

sensitive to the scale of the model, with larger models

achieving better results on every metric. Furthermore,

the translation from English to Italian makes the task

more challenging for smaller models. As a matter of fact,

Qwen 2.5 VL 7B Instruct achieves a score of .4800 in

BLEU for the "long" dataset in translation from English

to Italian, while it achieves a score of .5839 in translation

from Italian to English. The same pattern is also present

for the "short" dataset, where the model achieves a score

of .4700 in exact match in translation from English to

Italian, while it achieves a score of .5900 in translation

from Italian to English. This pattern is less prevalent for

2
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Model With Image EN → IT IT → EN

BLEU METEOR COMET BLEU METEOR COMET

Qwen2.5-VL-3B-Instruct
X .4332 .6871 .8627 .5551 .8233 .8987

✓ .4316 .6813 .8637 .5644 .8266 .9026

Qwen2.5-VL-7B-Instruct
X .4793 .7213 .8751 .5680 .8308 .9037

✓ .4800 .7211 .8745 .5839 .8398 .9069

Qwen2.5-VL-72B-Instruct
X .6064 .8021 .8994 .5803 .8473 .9048

✓ .6186 .8130 .9056 .6027 .8589 .9103

Llama-4-Scout-17B-16E-Instruct
X .5441 .8084 .8815 .5346 .8364 .8895

✓ .5413 .8043 .8797 .5311 .8396 .8839

Table 1
Results for the BLEU and METEOR metrics on the "long" dataset for translation from English to Italian and viceversa. The

"With Image" column indicates whether the input text is provided to the model along with the associated image for each

instance. For each model, the best score for each metric is underlined. The best result for each metric across all models is in

bold.

Model With Image EN→ IT IT→ EN

EM EM

Qwen2.5-VL-3B-Instruct
X .3825 .4550

✓ .3625 .4800

Qwen2.5-VL-7B-Instruct
X .4700 .5150

✓ .4700 .5900

Qwen2.5-VL-72B-Instruct
X .6150 .6175

✓ .6750 .6775

Llama-4-Scout-17B-16E-Instruct
X .5950 .5275

✓ .5375 .3675

Table 2
Results for the exact match metric on the "short" dataset for translation from English to Italian and viceversa. The "With

Image" column indicates whether the input text is provided to the model along with the associated image for each instance.

For each model, the best score for each metric is underlined. The best result for each metric across all models is in bold.

bigger models, for example, Qwen 2.5 VL 72B Instruct

achieves a score of .6186 in BLEU for the "long" dataset

in translation from English to Italian and a score of .6027

in translation from Italian to English. This showcases

that natural language generation capabilities of smaller

models are limited in a multilingual use case w.r.t. bigger

models, since they achieve better performance when gen-

erating English text. Finally, results also showcase that,

in general, the presence of the image in the input is better

for translation. For example, Qwen 2.5 VL 7B Instruct

achieves an exact match score of .5900 on the "short"

dataset for translation from Italian to English when the

image is provided in the input, while it achieves a score

of .5150 when it is not provided. However, there are

some exceptions, for example, LLaMA Scout performs

better when the image is not provided as part of the input,

which highlights the importance of testing the behaviour

of different models for this task.

5.3. Evaluation of LLMs against LVLMs
All models considered so far are LVLMs, that is, they have

been extensively trained on a multimodal data mixture.

However, since we have also studied these models for

MMT without providing the input image, the underlying

vision encoder used by LVLMs becomes useless, as no

visual input is provided. In light of this, we compare the

performance of two models of the same size and architec-

ture, where one is an LLM and the other is an LVLM. This

allows us to determine whether multimodal training can

still be beneficial for MMT even when an image is not

provided as additional input. To perform this experiment,

we rely on Qwen 2.5 VL 7B and Qwen 2.5 7B, which

guarantees fairness of the experiment between the two



Model Multi30K BabelNet

EN→ IT IT→ EN EN→ IT IT→ EN

BLEU METEOR COMET BLEU METEOR COMET EM EM

Qwen2.5-7B-Instruct .4132 .6887 .8867 .5153 .8211 .8530 .3875 .4925

Qwen2.5-VL-7B-Instruct (no image) .4793 .7213 .8751 .5680 .8308 .9037 .4700 .5150

Table 3
Results for the Qwen 2.5 models (with and without multimodal input support) for the "long" and "short" dataset using their

related metrics. Best result between the two models for each metric is in bold.

models (since they share the same number of parame-

ters and underlying architecture). Results are reported

in Table 3. Interestingly, the LVLM performs better than

the LLM on both the "short" and "long" datasets. This

highlights that multimodal training still helps in MMT

when the image input is not provided. This is probably

due to the style of the text that LVLMs are trained on.

For example, LVLM training includes data containing

image captions, which still affects the model even when

no image is provided in the input during inference.

5.4. Evaluation of generation strategy
All results considered so far used greedy decoding as the

generation strategy. In greedy decoding, each new token

that is generated is selected according to the highest prob-

ability out of all the ones available in the model’s vocabu-

lary. However, beam search has been widely considered

as the standard generation strategy for the machine trans-

lation task [19]. In beam search, the model considers the

𝑛 possible paths with the highest probability at each gen-

eration step, instead of only considering the path of the

highest probability token for each generation step. This

strategy enables the model to avoid greedy predictions,

where the overall probability of a greedy-generated path

is lower than the overall probability of another path that

wasn’t considered due to greedy generation. However,

in modern LLMs, this strategy has been widely disre-

garded. Even popular frameworks used for inference and

deployment of LLMs are considering dropping support

for this generation strategy
3

, since most models lever-

age sampling-based strategies, where the next token is

sampled from the probability distribution learned from

the model. This is due to computational efficiency, since

beam search considers multiple possible generation paths

it takes more time than greedy decoding. Therefore, we

are interested in understanding how relevant is beam

search in modern LVLMs for the MMT task. In this case,

we only consider the Qwen 2.5 VL 7B model and all pre-

viously considered settings on this model. We perform

beam search decoding with a number of beams equal

to 3. Note that there is still no sampling when using

this approach, since the strategy still relies on navigating

3
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the paths with the highest probability. Therefore, the re-

sults are still reproducible, and randomness is not present.

Results for the "long" and "short" datasets are reported

in Table 4. Results indicate that performance improves

when using beam search, both for inference with and

without the image associated with the text. Remarkably,

performance is also better for the "short" dataset, indi-

cating that even for the generation of a short sequence

of tokens, beam search still proves more effective than

greedy decoding.

5.5. Error Analysis
We perform manual verification of a subset of instances

for both the "long" and "short" datasets. We aim to find

types of errors in instances where the generated lemma is

not correct (for the "short" dataset) and where the gener-

ated translated sentence is not correct (for the "long"

dataset). For LLaMA Scout, most error cases for the

"short" dataset are related to the model generating longer

outputs to describe the reasoning process or alternative

options. For example, the model may provide a list of

possible alternatives, separated by a newline character,

instead of a single string. This highlights that the model

is not as capable of following instructions embedded

within the prompt (that is, the string "Provide only the

translated text") when the text to translate only contains

a few words. This behavior is not as prevalent for the

"long" dataset where the model only provides the trans-

lated sentence directly. Additionally, this pattern is more

present for outputs obtained when performing inference

using the image, rather than text alone. This explains

the lower result for exact match on the "short" dataset in

translation from Italian to English for LLaMA Scout as

shown in Table 2. However, this does not seem to affect

Qwen 2.5 VL 72B as much, since there is no instance

of generated text showcasing the previously described

problem. Finally, we also showcase a relevant problem in

MMT for the "long" dataset. That is, properly evaluating

domain-specific knowledge is complex in the MMT task.

For example, several instances within the original dataset

refer to the "football" sport (e.g. "A young man about to

throw a football."). When translating these instances from

Italian to English with the image paired to it, even when

https://github.com/vllm-project/vllm/issues/6226


Model With Image Multi30K BabelNet

EN→ IT IT → EN EN → IT IT → EN

BLEU METEOR COMET BLEU METEOR COMET EM EM

Qwen2.5-VL-7B-Instruct GD
X .4793 .7213 .8751 .5680 .8308 .9037 .4700 .5150

✓ .4800 .7211 .8745 .5839 .8398 .9069 .4700 .5900

Qwen2.5-VL-7B-Instruct BS
X .5169 .7462 .8856 .5745 .8380 .9049 .4800 .5350

✓ .5103 .7408 .8842 .5961 .8467 .9086 .4925 .5950

Table 4
Results for the Qwen 2.5 Vl 7B model on the greedy decoding (GD) and beam search (BS) generation strategies for the "long"

and "short" dataset using their related metrics. Best result between the two models for each metric is in bold.

Figure 2: Example of the two types or errors that have been manually verified. The first example refers to an instance of the

"short" dataset generated by LLaMA Scout, while the second refers to an instance of the "long" dataset generated by Qwen 2.5

VL 72B. In the first example, the translation with the image input is correct, but due to the reasoning generated by the model,

is flagged as incorrect by the exact match metric. In the second case, the translation that is obtained using the additional

input image is more faithful to the contents of the image w.r.t. the contents of the input sentence.

the word "football" was kept in the translated text (e.g.

"Un ragazzo pronto a lanciare un pallone da football."),

the model translated it with "rugby" (e.g. "A boy ready to

throw a rugby ball."). Interestingly, this pattern is not as

prevalent when the image is not provided to the model,

which tends to follow the terminology used in the input

sentence (e.g. "A boy ready to throw a football."). This

pattern was also evident for the Qwen 2.5 VL 72B model,

which is the best-performing model on the benchmark.

This highlights that the models tend to prefer specific

terminology and are overall deeply affected by the image

that is paired with the input text. In Figure 2 we provide

visual examples of these two types of errors we found

during manual verification.

6. Conclusions
In this work, we have extended the current state-of-the-

art in MMT by providing a study on the English and

Italian languages for the task. Specifically, we extended

the most relevant dataset in the state-of-the-art for MMT,

that is Multi30K and introduced a new benchmark based

on BabelNet, which allows to study the effectiveness of

MMT when the text only consists of few words. More-

over, we have conducted extensive experimentation with

several modern LVLMs, evaluating their performance in

MMT across two different use cases ("long" and "short"

input text). Finally, we have studied and discussed the

impact of several factors on the performance of the mod-

els for MMT, namely the presence of an image along with

the input text, the scale of the model, the use of LLMs

instead of LVLMs, and the generation strategy. In the fu-



ture, we plan to further extend this study to more models

and to consider additional languages, like German and

French that are present in the original Multi30K dataset.
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