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Abstract

Multilingual language models are attractive, as they allow us to cross linguistic boundaries, and solve tasks in different

languages in the same mathematical space. They come, however, at a cost: in the quest to find a shared space that satisfies (to

a certain degree) all languages, the resulting representations lose, or fail to capture, properties specific to each language. We

present an investigation into detecting linguistic structure through lexical abstraction. We study both a multilingual and a

monolingual language model, and quantify the loss of information between them.

I modelli di linguaggio multilingue permettono di oltrepassare i confini linguistici e di risolvere task in lingue di-

verse mantenendo lo stesso spazio matematico. Tuttavia, questi modelli hanno un costo: nella ricerca di uno spazio condiviso

che soddisfi (in una certa misura) tutte le lingue, le rappresentazioni risultanti perdono, o non riescono a catturare, le

proprietà specifiche di ciascuna lingua. Usando il fenomeno di astrazione lessicale, presentiamo qui un’indagine su come la

struttura linguistica venga individuata: analizziamo sia un modello linguistico multilingue che un modello monolingue, e

quantifichiamo la perdita di informazioni tra di essi.
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1. Introduction

Multilingual models are attractive because they project

all languages represented in the training data into the

same 𝑛-dimensional space. This makes it easy to plug

them into tasks in different languages.

The abilities of multilingual models are being actively

debated. The first large-scale multilingual models suf-

fered from the curse of multilinguality: “more languages

leads to better cross-lingual performance on low-resource

languages up until a point, after which the overall per-

formance on monolingual and cross-lingual benchmarks

degrade" [1, p. 1], which could be remedied by increasing

the capacity of the models [1], or by training bilingual

models for low-resource languages, where each such lan-

guage is paired with a linguistically-related language [2].

Forcing many languages to share the parameter space,

may lead to the emergence of language universal rep-

resentations in pretrained encoder models [3], possibly

even grammatical structure [4, 5]. However, these mod-

els do not encode structure in a language-independent,

abstract, way, but rather encode language-specific token-

level clues [6].

The work presented in this paper adds more detail
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to this picture. We investigate how accessible sentence

structure is in sentence representations, comparing the

representations obtained from a multilingual encoder

model to its monolingual counterpart. We conduct this

exploration on the problem of lexical abstraction, the pro-

cess of reducing a sentence to its syntactic and semantic

"skeleton" by replacing noun and prepositional phrases

with functional words, as in the example: The authors
wrote the paper. and They wrote it. We expect that lexi-

cal abstraction has occurred if we can detect the same

syntactic structure in the embeddings of lexicalized and

functional versions of pairs of sentences. This setup veri-

fies whether the multilingual model or the monolingual

models perform better. The former results would indi-

cate that training on several languages is beneficial to

discovering shared structures. The latter result, instead,

would indicate that sentence structure is encoded in a

more language-specific manner, and is encoded better

by a monolingual model, as the model does not need to

reconcile the different ways the same type of grammati-

cal information is expressed in different languages (e.g.

number, case, gender, definiteness).

To further explore multilingual models, we also per-

form experiments with generative LLMs, as they have

been shown to favour English as an "internal" language

[7, 8]. Here, we test whether a multilingual LLM detects

(and generates) sentence structure better in English sen-

tences than Italian ones, by prompting the model with

English, and separately with Italian sentences, asking it

to produce the Italian functional form.

mailto:vivi.a.nastase@gmail.com
mailto:giuseppe.samo@idiap.ch
mailto:chunyang.jiang42@gmail.com
mailto:Paola.Merlo@unige.ch
https://creativecommons.org/licenses/by/4.0


2. Data

To investigate how accessible sentence structure is in

representations built by large language models, we use

the Italian portion of a dataset that models the verb al-

ternations change-of-state (CoS) and object drop (OD)

[9]. The CoS verb class can undergo the transitive/in-

transitive causative alternation, where the object of the

transitive verb bears the same semantic role (Patient)

as the subject of the intransitive verb (The tourist broke
the vase/The vase broke). The transitive form of the verb

has a causative meaning. In contrast, for OD verbs the

subject bears the same semantic role (Agent) in both the

transitive and intransitive forms and the verb does not

have a causative meaning (The artist was paiting this fres-
co/ The artist was painting) [10, 11]. Italian shows the

same asymmetry but marks the intransitive alternant

for CoS with a reflexive-like element SI (Il turista ruppe
il vaso/Il vaso si ruppe; L’artista stava dipingendo questo
affresco/l’artista stava dipingendo).

These verb classes constitute an ideal test-bed for our

research question, because their combination of syntactic

and semantic structure allows us not only to test whether

sentences with different syntactic structures can be dis-

tinguished, but also whether sentences with the same

syntactic structure but differing in the semantic roles can

be distinguished.

The data, described in detail in [12], consists of in-

stances of a Blackbird Language Matrices (BLM), a lin-

guistic puzzle [13]. Each instance consists of an input

context of seven sentences that illustrate several varia-

tions of CoS/OD verbs, and an answer set that contains a

correct answer, and nine wrong answer candidates, each

of which is erroneous in specific ways. Figure 1 shows

the syntactic-semantic structure of the sentences in a

BLM instance. Lexicalized and functional instances are

shown in tables 4 and 5 in the appendix.

Each BLM instance has a lexicalized (LEX) and a func-

tional (FUN) form. In addition, there are three variations

– type I, type II, type III – with increasing levels of lexical

variation. The dataset is built based on thirty (manually

chosen) verbs from each of the two classes discussed in

Levin [10]. The functional lexicon has been manually

selected by the authors to maintain the syntactic and

semantic acceptability of the sentences.

We build two variations starting from this dataset that

allow us to test, from several angles, whether sentence

structure is encoded in a sentence embedding in an ab-

stract manner.

Sentences We compile parallel versions of the sen-

tences in their lexicalized and functional word forms from

the FUN and LEX subsets of the type I BLM dataset. Each

sentence has associated its syntactic pattern (the syntac-

tic version of the syntactic-semantic template shown in

COS context

1 Agent Active Patient p-NP

2 Agent Active Patient by-NP

3 Patient Passive by-Agent p-NP

4 Patient Passive by-Agent by-NP

5 Patient Passive p-NP

6 Patient Passive by-NP

7 Patient Active p-NP

8 ?

OD context

1 Agent Active Patient p-NP

2 Agent Active Patient by-NP

3 Patient Passive by-Agent p-NP

4 Patient Passive by-Agent by-NP

5 Patient Passive p-NP

6 Patient Passive by-NP

7 Agent Active p-NP

8 ?

COS answers

Patient SI Active by-NP Correct

Agent SI Active by-NP I-Int

Patient Passive by-Agent ER-Pass

Agent Passive by-Patient IER-Pass

Patient Active Agent R-Trans

Agent Active Patient IR-Trans

Patient Active by-Agent E-WrBy

Agent Active by-Patient IE-WrBy

Patient Active by-NP NoSi

Agent Active by-NP I-NoSI

OD answers

Patient Active by-NP I-Int

Agent Active by-NP Correct

Patient Passive by-Agent IER-Pass

Agent Passive by-Patient ER-Pass

Patient Active Agent I-Trans

Agent Active Patient R-Trans

Patient Active by-Agent IE-WrBy

Agent Active by-Patient E-WrBy

Patient SI Active by-NP I-SI

Agent SI Active by-NP SI

Figure 1: Context and answer sentence structures for change-

of-state (CoS) verbs (left), and object drop (OD) verbs (right).

Figure 1). From these, we sample 6000 sentences, uni-

formly distributed over the eight syntactic-semantic pat-

terns. These are split into 4800:1200 training and test

instances and 20% of the training data is used for valida-

tion (train:dev:test – 3840:960:1200).

BLM data Of the thirty verbs for each class, change of

state and object drop, three are selected for testing and the

other 27 for training. All instances for the three testing

verbs are used. Two-thousand instances of the other 27

verbs are randomly sampled for training. Ten percent of

the training data is dynamically selected for validation.

The same 27:3 verb split is used for all FUN/LEX and

type I/type II/type III variations. All variations have 2000

instances for training, 300 for testing. In the experiments

reported here we use a variation where the CoS and

OD subtasks are merged. The data is split in a similar

manner for training and testing (and using the same verbs

for training and testing as in the split of the individual

subsets).

3. Experiments

We aim to quantify to what degree multilingual and

monolingual language models encode syntactic structure

by using the lexical abstraction property of pronouns and

adverbs relative to nouns and noun phrases. We explore

encoder models, and test whether the same syntactic

structure and semantic role information is encoded in

the embeddings of lexicalized sentences and their func-

tional versions. With generative LLMs, we compare the

performance of a model in generating the functional ver-

sion of an input sentence, when this input is either in

English or Italian, and the output is constrained to be

Italian.



3.1. Sentence structure in encoder models

We perform two analyses to test whether the representa-

tion of functional and lexicalized sentences encode the

same grammatical structure, in the same way: (i) we ana-

lyze individual sentences and test to what degree their

grammatical structure (phrases and their semantic roles)

can be detected (Section 3.1.1); (ii) we deploy the BLM lin-

guistic puzzles, whose solution relies on detecting shared

structure at the level of input sequence and within each

sentence (Section 3.1.2).

We obtain word and sentence representations (as av-

eraged token embeddings) from an Electra pretrained

model [14]
1

. We choose Electra because it has been

shown to perform better than models from the BERT

family on the Holmes benchmark
2

, and to also encode in-

formation about syntactic and argument structure better

[15, 16]. We use the Italian Electra
3

as our monolingual

model.

3.1.1. Grammatical structure in sentence

embeddings

Syntactic structure and semantic roles represent com-

plex information, which may be encoded by weighted

combinations of subsets of dimensions [17, 18].

We mine the sentence repesentations for this infor-

mation following the approach described in Nastase and

Merlo [16]. Using a variational encoder-decoder, an in-

put sentence is compressed into a representation that

captures syntactic and semantic role information, by im-

posing that the system reconstructs a sentence with the

same syntactic and semantic information. An instance

consists of an input sentence 𝑠𝑖 with structure 𝑠𝑡𝑟𝑖, and

a set of candidate outputs, with a sentence 𝑠𝑗 ̸= 𝑠𝑖 that

has the same structure (𝑠𝑡𝑟𝑗 = 𝑠𝑡𝑟𝑖), and N negative ex-

amples 𝑠𝑘 that have different structures (𝑠𝑡𝑟𝑘 ̸= 𝑠𝑡𝑟𝑖). In

our experiments we use N = 7. The structure information

is used to build the dataset and obtain a deeper evaluation

of the results, but is not provided to the system.

Using the sentences datasets described in section 2,

we built datasets consisting of a mix of FUN and LEX

instances (an instace will only contain either FUN or LEX

sentences), and use the above-mentioned set-up to test:

(i) how well a system reconstructs a sentence with the

desired syntactic and semantic information, measured at

the output through F1 score
4

, and (ii) how well the sys-

tem identifies the different patterns. Specifically, we ask

1google/electra-base-discriminator
2
The HOLMES benchmark leaderboard: https://holmes-leaderboard.

streamlit.app/. At the time of writing, the ranks were: Electra - 16,

DeBERTa - 21, BERT - 41, RoBERTa - 45.

3dbmdz/electra-base-italian-xxl-cased-discriminator
4
When processing each instance, the system chooses among 8 op-

tions, of which one is correct. The F1 score of the "positive" class

provides the most balanced measure of performance.

train on

test on FUN LEX

e e-It e e-it

FUN 0.92 0.98 0.20 0.23

LEX 0.20 0.32 0.78 0.92

Mixed 0.76 0.91 0.57 0.81

Table 1

F1 scores (averages over three runs) on predicting the sentence

with the same structure as the input, through a variational

encoder-decoder system, for sentences encoded with (multi-

lingual) Electra (e) or (monolingual) Electra-It (e-It).

whether the same patterns in lexicalized and functional

forms are detected as being the same, and, thus, mapped

onto the same representation on the latent layer. We es-

timate similarity of representations by visualising them

on the latent layer. Sentence embeddings from Electra

have size 768, and the latent layer in the used system has

size five.

Table 1 shows the averaged F1 scores over three ex-

periments. We note first that training and testing on

the same type (FUN or LEX) leads to high results, thus

validating the experimental set-up.

The results on test data of the same type as the training

are very different from those on the test of the other type.

This indicates that for each of the FUN and LEX data

variations, the system discovers different clues to match

two sentences with the same structure. The high results

when training on the sentences with functional words

may also indicate overfitting because of the repetitive vo-

cabulary. We note that, consistently, the results obtained

when using a monolingual model are higher than those

when using the multilingual one, despite the assumption

that a multilingual model must learn more abstract rep-

resentations to satisfy the constraints of modeling many

languages.

Additional information comes from the analysis of the

compressed representations on the latent layer, which

are expected to capture the sentence structure that is

shared by the functional and lexicalized data. We show

the projection on the latent layer of the sentence repre-

sentations in Figure 2, when sentence representations

are obtained from Electra (left) and Electra-It (right). We

note that these latent projections cluster by the syntactic

structure and semantic roles of the sentences, and that

using Electra-It representations leads to a tighter mix of

lexicalized and functional sentences that have the same

syntactic structure. This adds depth to the results in Table

1 – showing that when trained on a mix of functionalized

and lexicalized instances, the system is able to discover a

shared space of clues about the grammatical structure –

and also shows that in the representations obtained from

Electra-It there are stronger shared clues about gram-

matical structure in both functionalized and lexicalized

sentences compared to the multilingual Electra model.

https://holmes-leaderboard.streamlit.app/
https://holmes-leaderboard.streamlit.app/


Figure 2: Latent representation analysis: t-SNE projection of vectors on the latent layer for the sentences in the training

instances, when sentences are encoded using electra (left) vs. electra-it (right). Lexicalized (Lex) and functional (Fun) sentences

with the same syntactic-semantic pattern should ideally be projected onto close vectors in the latent space.

3.1.2. Task solving

It might be objected that the previous experiments and

visualisations do not conclusively show that latent rep-

resentations encode structure, as opposed to just distin-

guishing seven distinct but amorphous classes. We use

the BLM data to provide additional support to the conclu-

sion that structure is represented. The BLM task frames

a linguistic phenomenon as a linguistic puzzle. Solving

this puzzle relies on detecting the linguistic objects, their

relevant properties, and the structure both within each

sentence, and across the input sequence.

Our BLM dataset has several levels of complexity: (i) a

mixture of change-of-state and object-drop verbs, which

exhibit different semantic frames for the intransitive an-

swers (patient vs agent subjects), and share other frames

(see Figure 1); (ii) lexicalized and functional instances;

(iii) maximal level of lexical variation in each instance.

This set-up will allow us to test whether syntactic struc-

ture and semantic roles are encoded similarly in the rep-

resentation of lexicalized and functional sentences by

monolingual and multilingual encoder models.

We use the system described by Nastase and Merlo [16],

that solves the BLM problem in two steps: compresses the

sentence into a representation that encodes the structure

relevant to the BLM puzzle – linguistic objects and their

syntactic and semantic role properties –, and uses these

compressed representations to solve the multiple-choice

puzzle. The system’s two steps are encoded through in-

terconnected variational encoder-decoders, as illustrated

in Figure 4, which are trained together. The learning

Figure 3: Comparison between the multilingual (left) and

monolingual (right) electra models for solving the BLM task:

average F1 over three runs. x-axis shows the traininng data:

training on FUN and LEX instances jointly vs. training sepa-

rately on FUN and LEX

objective is to maximize the score of the correct answer

from the candidate answer set, and minimize that of the

incorrect ones. During testing, the system constructs the

representation of an answer, then chooses the closest one

from the given options. All potential answers consist of

a verb frame filled with phrases that play specific roles

(Section 2). The correct one consists of the combination

of phrases whose roles fit together for the given verb,

while the other contain similar pieces, but which violate

some semantic, syntactic (or both) rules. This set-up al-

lows us to test whether specific elements in the sentences

from the input sequence, and their semantic roles have

been detected and used properly in building the correct

answer.

Figure 3 shows the F1 results (as averages over three



Figure 4: Two-step VAE BLM solver

runs) of training jointly on FUN and LEX instances vs.

separate training for the causal verbs BLM task. We

use the dataset variations that have the maximum lexical

variation (type III, see Section 2), to encourage the system

towards finding more abstract representations.

Processing separately datasets of sentences with and

without functional words leads to high results within

each task, validating the experimental set-up, but leads

to low results when testing across tasks. This shows, as in

the analysis of the sentences datasets, that for each of the

FUN and LEX subsets, the systems discovers and exploits

different regularities in the training data, despite the high

degree of lexical variation in the lexicalized subset. Using

a mixed training dataset, instead, encourages all systems

to find a shared feature space. As in the experiments on

finding structure in the individual sentences, we note

that the shared structure between functional and lexi-

calized sentences is better encoded in the monolingual

Electra model, compared to the multilingual version. Fur-

thermore, comparing the results on the separate training

(FUN vs. LEX), we note that the monolingual representa-

tions lead to much better generalizations for both set-ups,

as the model trained only on the functional forms leads

to a significant performance increase when applied on

the lexicalized data: from 0.24 average F1 to 0.56 on the

monolingual model. The system is also much better able

to generalize when trained on the lexicalized version only

with the monolingual model: 0.95 average F1 score vs.

0.67 for the multilingual model.

3.2. Generating functional variations of

sentences

Multilingual generative models are not exposed to the

same amounts of training data across languages and prob-

ably for that reason they do not appear to treat every

language in their training data equally. In fact, evidence

has shown that English serves as a latent language for

generative models (LlaMa 2). Tracking an input in lan-

guages other than English through the intermediate lay-

ers of the transformer, it has been shown that from the

input the representations drift more and more towards

English, with a switch towards the input language’s rep-

resentation only at the last layers [7, 8]. We test whether

this implies that the structure of an English sentence is

encoded better than the structure of a sentence in Italian,

or whether they both benefit from having been encoded

together. For this we prompt the models with lexicalized

sentences, and instruct them to convert the sentences to

their functional equivalents by replacing nouns with pro-

nouns, prepositional phrases with adverbs and deictics,

while maintaining the syntactic structure.

From the dataset of sentences described in section

2, we build 110 instances, each consisting of an Italian

sentence, its English translation, and the corresponding

Italian functional form. We use 100 instances for test-

ing, and from the remaining 10 we sample N for N-shot

prompting (N ∈ {1, 5}).

3.2.1. Prompts

We use Meta-Llama-3.1-8B-Instruct, trained on diverse

multilingual data with general instruction-following ca-

pabilities, and compare two settings: (i) prompting in

English with English sentences and requesting Italian

functional forms, (ii) prompting in Italian, with Italian

sentences, and requesting the corresponding Italian func-

tional form. We use batch processing with fixed batch

sizes of five to ensure consistent evaluation conditions

across all experiments.

The prompt with English input sentence, and

requesting an Italian functional version is shown below.

Convert these English sentences to Italian by replacing

noun phrases with pronouns and prepositional phrases

with adverbs. Keep the same syntactic structure.

Examples:

Input: "these toys were carved by his parents in

the cabin" → Output: "questi erano intagliati da loro là"

Now convert these:

1. Input: "that song had been hummed by my

friends for a few weeks"

Output:

2. Input: "the local languages are studied by some

linguists"

Output:

...

The prompt with Italian input sentence, and request-

ing an Italian functional version is shown below.



set-up ident struct pron

En-It 1-shot 0 0.63 0.24

En-It 5-shot 0 0.66 0.48

It-It 1-shot 0.03 0.76 0.79

It-It 5-shot 0.08 0.79 0.83

Table 2

Testing English as a "pivot language" for the LLaMa genera-

tive model. Transforming an English input sentence into the

Italian functional form (En-It) and the Italian sentence into its

functional form (It-It).

Replace noun phrases with pronouns and prepositional

phrases with adverbs. Preserve the exact syntactic

structure, word order, and verb forms.

Examples:

Input: "i suoi giocattoli erano intagliati dai suoi

genitori nella baita" → Output: "questi erano intagliati

da loro là"

Now convert these:

1. Input: "quella canzone era canticchiata dai miei

amici da qualche settimana"

Output:

2. Input: "le lingue del luogo sono studiate da

alcuni linguisti"

Output:

...

3.2.2. Evaluation

To evaluate the outputs, we use three complementary

measures: (i) perfect match (ident) the percentage of in-

stances for which the system generation matches the

gold standard (ii) structure match (struct), for each output

we compute an F1 score that quantifies how well the sys-

tem has predicted the structure
5

and (iii) pronoun/adverb
ratio (pron), where we compute the ratio of pronouns and

adverbs in the system output and the pronouns and ad-

verbs in the gold standard. All these measures are rough

approximations, and overestimate the performance, but

in a consistent manner. Table 2 shows these measures

for the four experimental set-ups.

Similarly to the experiments on the monolingual and

multilingual encoder models, the experiments on the gen-

erative LLM has shown that forcing multiple languages

to share the parameter space leads to the loss of syntactic,

semantic and lexical language-specific information. The

5
We obtain dependency relations for the system output and the gold

standard using spaCy (https://spacy.io/v.3.8.7), and computed the

F1 based on the true positive count (how many relations overlap),

false positive (how many additional relations the system answer

has relative to the gold standard) and false negatives (how many

dependencies the gold standard has that do not appear in the system

output).

set-up does not lead to the encoding of shared abstract

grammatical representations [1, 3, 19, 4, 5]. Whether En-

glish is the internal language of generative LLMs from

the LlaMa family or not [7, 8], the structure of English

sentences does not seem to be better encoded than for

Italian. Furthermore, the match between the language of

the input and the output seems to be of importance.

4. Discussion

We aimed to explore the impact of encoding together

multiple language, with English dominating the training

data, for encoder and decoder language models.

The comparison of detecting syntactic-semantic struc-

ture using a multilingual and a monolingual encoder

model has shown that the monolingual Italian model

encodes both structural and linguistic abstraction infor-

mation in a cleaner and more accessible way compared

to a multilingual model, contrary to previous hypotheses

about multilingual training leading to the encoding of

more abstract linguistic structures. We have shown this

effect through an exploration of individual sentences, as

well as when the sentence structure was required to solve

a more complex linguistic puzzle. Adding the lexical ab-

straction level to the structure exploration allows us to

reach the shared structures of lexicalized and functional

sentence variations.

Using a decoder transformer model, we have explored

sentence structure encoding through the generative lens:

how well does a system recognize and preserve the syn-

tactic and semantic structure of an input sentence. Be-

cause it has been shown that English functions as a latent

language, it would be expected that the structure of an

English sentence is more readily detected and preserved.

We found that that is not the case, and mapping a lexical-

ized Italian input sentence into its functional form leads

to better results, both in terms of preserving the struc-

ture, and in the generation of pronominal and adverbial

replacements for noun and prepositional phrases.

5. Related work

Multilingual models project many languages in the same

parameter space. This brings some clear advantages: the

model can be moved easily between different language

applications, and it allows for low-resource languages to

be bootstrapped by their connections to other languages.

It has been surmised that forcing multiple languages to

share the same parameter space will lead to the emer-

gence of linguistic universals. It has been shown that

that LLMs generalize across languages through implic-

itly learned vector alignment, which is less robust for

generative models [20]. Some work using cross-lingual

https://spacy.io/ v. 3.8.7


structural priming finds evidence that grammatical rep-

resentations are abstract and shared in multilingual lan-

guage models [5] . Further exploration has found, how-

ever, that this effect depends on the similarity between

the included languages [21]. It has also been shown that

models encode grammatical information, such as chunks

and structure, in a language-specific manner [6]. Overall,

it is difficult to draw a conclusion on the performance of

multilingual models, because it can be overestimated due

to skewed language selection [22].

There are also downsides to building a multilingual

model, as language particularities may be lost in the

shared space, particularly when there is a dominant lan-

guage. This may lead to language confusion in generation

[23], and a decrease in the faithfulness of the multilingual

models compared to monolingual ones, assessed in terms

of feature attribution [24]. An asymmetrical effect of re-

call in monolingual and multilingual models depending

on the syntactic role (subject vs. object) has also been

found [25]. Finally, the language of the prompt affects a

multilingual model’s performance on binary questions

about sentence grammaticality [26].

6. Conclusions

The current work aimed to explore the costs or advan-

tages of multilingual and monolingual models, in a lin-

guistic problem that involves a form of abstraction in

language models. In particular, we focused on the issue

of lexical abstraction through functional words – pro-

nouns and adverbs standing in for noun and prepositional

phrases. Lexicalized and functional versions of the same

sentence share syntactic structure and semantic roles, in-

formation which should be encoded by language models.

We tested whether this information is identifiable and

whether lexicalized and functional parallel sentences en-

code this information in a similar manner. We explored

multilingual models, testing the assumption that forcing

many languages to share the same parameter space leads

to a more abstract encoding of information. We found

that this assumption does not hold in either encoder or

decoder models.
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A. Blackbird Language Matrices data

Verb split between train and test for the COS and OD subsets. For the sentence representation analysis, the data

respects the same split.

A.1. Data split

Table 3 below shows the train:test split of the 30 verbs for each of the change-of-state and object-drop verbs. 100

instances for each verb will be included completely either in the training or the test subsets.

Class Verb

Train Test

COS addolcire, affilare, allargare, annerire, aprire, armonizzare, caramellare, chiud-

ere, corrodere, cuocere, espandere, friggere, indurire, ingrandire, intensificare,

migliorare, piegare, propagare, purificare, rimpicciolire, riscaldare, rompere,

sbiancare, sciogliere, scongelare, stropicciare, svuotare

illuminare, scheggiare,

strappare

OD allattare, arare, bere, cantare, canticchiare, cucinare, cucire, dipingere, dis-

egnare, giocare, impastare, insegnare, lavare, leggere, lucidare, mangiare,

mungere, pescare, pulire, rammendare, recitare, saldare, scolpire, seminare,

spazzare, studiare, tessere

intagliare, scrivere, stirare

Table 3

BLM data: train/test verbs grouped by class

A.2. BLM task instances for change-of-state verbs

Table 4 show a lexicalized and functional instance from the change-of-state verbs.

COS

Context

Functional Lexical
1 Loro friggevano quelle lì per noi Le contadine friggevano delle uova per la serata

2 Loro friggevano quelle lì da poco Le contadine friggevano delle uova da pochi minuti

3 Quelle lì erano fritte da loro per noi Le uova erano fritte dalle contadine per la serata

4 Quelle lì erano fritte da loro da poco Le uova erano fritte dalle contadine da pochi minuti

5 Quelle lì erano fritte per noi Le uova erano fritte per la serata

6 Quelle lì erano fritte da poco Le uova erano fritte da pochi minuti

7 Quelle lì friggevano per noi Le uova friggevano per la serata

8 ? ?

Answer Set

1 Quelle lì friggevano da poco Le uova friggevano da pochi minuti

2 Loro friggevano da poco Le contadine friggevano da pochi minuti

3 Quelle lì erano fritte da loro Le uova erano fritte dalle contadine

4 Loro erano fritte da quelle lì Le contadine erano fritte dalle uova

5 Quelle lì friggevano loro Le uova friggevano le contadine

6 Loro friggevano quelle lì Le contadine friggevano le uova

7 Quelle lì friggevano da loro Le uova friggevano dalle contadine

8 Loro friggevano da quelle lì Le contadine friggevano dalle uova

Table 4

Example for ItCOSFun and ItCOSLex



A.3. BLM task instances for object-drop verbs

Table 5 show a lexicalized and functional instance from the object-drop verbs.

OD

Context

Functional Lexical
1 Lei recitava questa per loro L’artista recita una poesia in fiorentino antico

2 Lei recitava questa da qui L’artista recita una poesia da qualche giorno

3 Questa era recitata da lei per loro La poesia è recitata dall’artista in fiorentino antico

4 Questa era recitata da lei da qui La poesia è recitata dall’artista da qualche giorno

5 Questa era recitata per loro La poesia è recitata in fiorentino antico

6 Questa era recitata da qui La poesia è recitata da qualche giorno

7 Lei recitava per loro L’artista recita in fiorentino antico

8 ? ?

Answer Set

1 Questa recitava da qui La poesia recita da qualche giorno

2 Lei recitava da qui L’artista recita da qualche giorno

3 Questa era recitata da lei La poesia è recitata dall’artista

4 Lei era recitata da questa L’artista è recitata dalla poesia

5 Questa recitava lei La poesia recita l’artista

6 Lei recitava questa L’artista recita la poesia

7 Questa recitava da lei La poesia recita dall’artista

8 Lei recitava da questa L’artista recita dalla poesia

Table 5

Example for ItODFun and ItODLex
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