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Abstract
The development of speech foundation models (SFMs) like Whisper and SeamlessM4T has significantly advanced the field of
speech processing. However, their closed nature–with inaccessible training data and code–poses major reproducibility and
fair evaluation challenges. While other domains have made substantial progress toward open science by developing fully
transparent models trained on open-source (OS) code and data, similar efforts in speech processing remain limited. To fill this
gap, we introduce FAMA, the first family of open science SFMs for English and Italian, trained on 150k+ hours of OS speech data.
Moreover, we present a new dataset containing 16k hours of cleaned and pseudo-labeled speech for both languages. Results
show that FAMA achieves competitive performance compared to existing SFMs while being up to 8 times faster. All artifacts,
including codebase, datasets, and models, are released under OS-compliant licenses, promoting openness in speech technology
research. The FAMA collection is available at: https://huggingface.co/collections/FBK-MT/fama-683425df3fb2b3171e0cdc9e
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1. Introduction
The development of speech foundation models (SFMs)
has significantly advanced speech processing in the last
few years, particularly in areas such as automatic speech
recognition (ASR) and speech translation (ST). Popu-
lar SFMs such as OpenAI Whisper [1] and Meta Seam-
lessM4T [2] have been released to the public in various
sizes and with extensive language coverage. However,
these models completely lack comprehensive accessibil-
ity to their training codebases and datasets, hindering
their reproducibility and raising concerns about poten-
tial data contamination [3], thereby complicating fair
evaluation.

In other domains, multiple efforts towards building
models that are more accessible, reproducible, and free
from proprietary constraints have been made [4, 5, 6, 7,
8, 9, 10]. For instance, the OLMO project [11] has demon-
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strated the feasibility of training large language models
(LLMs) using only open-source (OS) data [12], realizing
an open-science1 system [14] for text processing. How-
ever, such comprehensive approaches are still lacking in
the field of speech processing.

Recent works towards this direction are represented
by OWSM [15] and its subsequent versions [16]. OWSM,
whose model weights and codebase used for the training
are released open source, reproduces a Whisper-style
training using publicly available data. Despite repre-
senting a valuable initiative toward building an open-
science system, there is still a step missing for creating
the first SFM of this kind: leveraging only data that is
not only publicly available but also released under an
OS-compliant license [17]. Such effort would allow users
complete access and control over the data used at every
stage of the scientific process, promoting reproducibility
[18], fair evaluation [19], and the ability to build upon
prior research without any barriers [20]. Besides trans-
parency and collaboration, these efforts also foster users’
trust by ensuring that data is not leveraged to build tools
that can be used under conditions/purposes (e.g., com-
mercial) for which the data was not intended [14].

To fill this gap, we release FAMA,2 the first family
of large-scale open-science SFMs for English and Italian
trained on over 150k hours of exclusively OS-compliant

1Open science involves ensuring transparency and accessibility at
all stages of the scientific process [13], including publishing OS
research papers, data, code, and any information needed to replicate
the research.

2Fama (from the Latin “fari” meaning “to speak”) is the personifica-
tion of the public voice in Roman mythology.
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speech data. We leverage both already available OS
datasets and create a new collection of ASR and ST
psuedolabels for Italian and English comprising more
than 16k hours of OS-compliant speech, along with auto-
matically generated Italian and English translations for
an additional 130k+ hours of speech. We also detail train-
ing and evaluation procedures and provide full access to
training data to have complete control of the model cre-
ation and avoid data contamination issues. FAMA models
achieve remarkable results, with up to 4.2 WER and 0.152
COMET improvement on average across languages com-
pared to OWSM and remaining competitive in terms of
ASR performance with the Whisper model family while
being up to 8 times faster. All the artifacts used for realiz-
ing FAMA models, including codebase, datasets, and mod-
els themself, are released under OS-compliant licenses,
promoting a more responsible creation of models in our
community. Our approach would not only facilitate fair
evaluation and comparison of SFMs but also encourage
broader participation in speech technology development,
leading to more inclusive and diverse applications.

The artifacts are available at:

FAMA-medium (878M):
https://hf.co/FBK-MT/fama-medium

FAMA-small (479M):
https://hf.co/FBK-MT/fama-small

FAMA-medium-asr (878M):
https://hf.co/FBK-MT/fama-medium-asr

FAMA-small-asr (479M):
https://hf.co/FBK-MT/fama-small-asr

FAMA Training Data:
https://hf.co/datasets/FBK-MT/fama-data

FAMA Code:
https://github.com/hlt-mt/FBK-fairseq

2. The FAMA Framework

2.1. Training and Evaluation Data
In compliance with the open-science ideology, we train
and test our models only on OS-compliant data. The
training set comprises both already publicly available
OS datasets, and new pseudolabels created for this work,
whose list is presented in Table 1.

To create the new pseudolabels, we leveraged the
speech content of YouTube-Commons,3 a dataset col-
lecting YouTube videos released with the permissive
3https://hf.co/datasets/PleIAs/YouTube-Commons

Dataset
#hours

Label
en it

CommonVoice v18 [21] 1746 250 G
CoVoST2 [22] 420 28 G
FLEURS [23] 7 9 G
LibriSpeech [24] 358 - G
MOSEL [17] 66,301 21,775 A
MLS [25] 44,600 247 G
VoxPopuli-ASR [26] 519 74 G
YouTube-Commons (our paper) 14,200 1,828 A

Total 128,152 24,211 G+A

Table 1
ASR: List of both publicly available training data and the data
created in this paper for English (en) and Italian (it). “G” stands
for gold labels while “A” for automatically generated labels
(transcripts).

CC-BY 4.0 license. The videos are automatically con-
verted into wav files with one channel and a sampling
rate of 16k Hz. Then, the audio is cleaned from music
and non-speech phenomena and segmented using silero
[27], a lightweight VAD having low computational re-
quirements. Lastly, to make it suitable for training, the
audio is split using SHAS [28] in segments of around
16 seconds on average. The resulting dataset contains
automatic transcripts, which we created with Whisper
large-v3,4 for 14,200 hours of speech for English (en)
and 1,828 for Italian (it). Including publicly available data
(113,951 hours for en, and 22,383 hours for it), the final
ASR training set comprises 128,152 hours of en speech
and 24,211 hours of it speech, with a total of 152,363 hours
of speech data, including 48,259 gold-labeled hours.

Being composed of speech-transcript pairs, the data
mentioned so far is suitable for ASR. For ST, instead,
only CoVoST2 and FLEURS contain translations from
and into en and it. For this reason, we automatically
translated the transcripts of all the speech data (includ-
ing the original CoVoST2) with MADLAD-400 3B-MT
[29].5 Following [30, 31], we additionally filter out sam-
ples based on the ratio 𝑟 between the source and tar-
get text lengths (in characters) for each language pair
based on their distribution (𝑟min = 0.75, 𝑟max = 1.45 for
en-it, and 𝑟min = 0.65, 𝑟max = 1.35 for it-en), resulting
into 3.41% of data filtering for en-it and 3.12% for it-en.
The final training set (Table 2) comprises the automati-
cally translated speech data and the gold CoVoST2 and
FLEURS datasets, resulting in a total of 147,686 hours for
en-it and it-en.

For validation during training, and testing, we use gold-
labeled benchmarks. ASR evaluation is conducted on
CommonVoice, MLS, and VoxPopuli, with CommonVoice

4https://hf.co/openai/whisper-large-v3
5https://hf.co/google/madlad400-3b-mt
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Dataset
#hours

Label
en-it it-en

CommonVoice v18 [21] 1746 250 A
CoVoST2 [22] - automatic labels 420 28 A
LibriSpeech [24] 358 - A
MOSEL [17] 66,301 21,775 A
MLS [25] 44,600 247 A
VoxPopuli-ASR [26] 519 74 A
YouTube-Commons (our paper) 14,200 1,828 A

Total (A) 128,144 24,202 A
Filtered (A) 123,777 23,445 A

CoVoST2 [22] - gold labels 420 28 G
FLEURS [23] 7 9 G

Total 124,204 23,482 G+A

Table 2
ST: List of both publicly available training data and the data
created in this paper for English-Italian (en-it) and Italian-
English (it-en). “G” stands for gold labels while “A” for auto-
matically generated labels (translations).

also serving as the validation set for both en and it. For
translation, we use CoVoST2 for it-en and FLEURS dev
and test sets for en-it.

2.2. Model Architecture
FAMA models are two-sized encoder-decoder architec-
tures, small and medium. Both models are composed
of a Conformer encoder [32] and a Transformer decoder
[33]. FAMA small has 12 encoder layers and 6 decoder
layers, while FAMA medium has 24 encoder layers and 12
decoder layers. Our decision to use an encoder twice as
deep as the decoder–unlike Whisper and OWSM, which
have an equal number of encoder and decoder layers–is
driven by two key motivations: i) since autoregressive
models perform multiple decoder passes during output
generation, a shallower decoder speeds up inference by
making each pass faster, and ii) since many approaches
integrate SFMs with LLMs by leveraging the encoder
[34], a deeper encoder helps preserve more of the SFMs
processing capabilities in such integrations. Each layer
has 16 attention heads, an embedding dimension of 1,024,
and an FFN dimension of 4,096.

The Conformer encoder is preceded by two 1D convo-
lutional layers with a stride of 2 and a kernel size of 5.
The kernel size of the Conformer convolutional module is
31 for both the point- and depth-wise convolutions. The
vocabulary is built using a SentencePiece unigram model
[35] with size 16,000 trained on en and it transcripts. Two
extra tokens–<lang:en> and <lang:it>–are added to
indicate whether the target text is in en or it. The in-
put audio is represented by 80 Mel-filterbank features
extracted every 10 ms with a window of 25 ms.

2.3. Training and Evaluation Procedures
We train both models using a combination of three losses.
First, a label-smoothed cross-entropy loss (ℒCE) is ap-
plied to the decoder output, using the target text as the
reference (transcripts for ASR and translations for ST).
Second, a CTC loss [36] is computed using transcripts as
reference (ℒCTCsrc) on the output of the 8th encoder layer
for small and the 16th for medium. Third, a CTC loss
on the final encoder output (ℒCTCtgt) is applied to predict
the target text. The final loss is the weighted sum of the
above-mentioned losses:

ℒ = 𝜆1ℒCE + 𝜆2ℒCTCsrc + 𝜆3ℒCTCtgt

where 𝜆1, 𝜆2, 𝜆3 = 5.0, 1.0, 2.0, and the label smooth-
ing factor of the CE is 0.1.

FAMA models are trained using a two-stage approach,
where the model is pre-trained first on ASR data only
(ASR pre-training) and then trained on both ASR and ST
data (ASR+ST training). Both training stages lasted 1M
steps, corresponding to ∼6 epochs over the training data.

For the ASR pre-training, the learning rate (𝑙𝑟S1) sched-
uler adopted to train the smallmodel is the Noam sched-
uler [33] with a peak of 2e-3 and 25,000 warm-up steps.
To cope with convergence issues similar to [16], for the
medium model we adopted a piece-wise warm-up on the
Noam scheduler, with the learning rate first increasing
linearly to 2e-5 for 25k steps and then to 2e-4 for an addi-
tional 25k steps, followed by the standard inverse square
root function. For the ASR+ST training, we sample the
ASR target with probability 𝑝ASR=0.5 and use the ST tar-
get otherwise. Training settings are the same as for ASR
pre-training, except for the learning rate that is set to a
constant value 𝑙𝑟S2=1e-4. Experiments on how 𝑝ASR and
𝑙𝑟S2 are determined for the small model are discussed
in Section 3.1. For the medium model, similarly to the
first stage, the 𝑙𝑟S2 is scaled down by one order of magni-
tude compared to the small model, i.e., a constant value
𝑙𝑟S2=1e-5 is used.

The optimizer is AdamW with momentum 𝛽1, 𝛽2 =
0.9, 0.98, a weight decay of 0.001, a dropout of 0.1, and
clip normalization of 10.0. We apply SpecAugment [37]
during both ASR pre-training and ASR+ST training. We
use mini-batches of 10,000 tokens for FAMA small and
4,500 for FAMA medium with an update frequency of,
respectively, 2 and 6 on 16 NVIDIA A100 GPUs (64GB
RAM), save checkpoints every 1,000 steps and average
the last 25 checkpoints to obtain the final model.

The inference is performed using a single NVIDIA
A100 GPU with a batch size of 80,000 tokens. We use
beam search with beam 5, unknown penalty of 10,000,
and no-repeat n-gram size of 5. Additionally, we report
the results using the joint CTC rescoring [38], leveraging
the CTC on the encoder output with weight 0.2. Both
training and inference are done using the bug-free Con-



former implementation [39] available in FBK-fairseq,6

which is built upon fairseq-S2T [40]. ASR performance
is evaluated with word error rate (WER) using the jiWER
library7 with the text normalized using Whisper normal-
izer8. ST performance is evaluated using COMET [41] ver-
sion 2.2.4, with the default Unbabel/wmt22-comet-da
model.

2.4. Terms of Comparison
As a first term of comparison, we use Whisper [1] in both
medium9 and large-v3 configurations as the first is
comparable with FAMA medium in terms of size and the
second–trained on more than 4M hours—is the best per-
forming model of the Whisper family. The comparison
is made for en and it ASR and it-en ST, as Whisper does
not cover the en-to-many translation directions. Whis-
per models are released under Apache 2.0 license and,
therefore, open weights. For both ASR and ST, we also
compare with SeamlessM4T medium10 and v2-large11

covering ASR and both ST language directions [2]. The
model is non-commercial and, therefore, not open. We
also compare with OWSM v3.1 medium12, the best per-
forming model of the OWSM family, also covering ASR
and both ST language directions and released open source
[16].

To ensure a fair comparison, we perform the inference
with HuggingFace transformers13 version 4.48.1 using the
standard settings and beam search with beam 5, except
for OWSM, which is not supported on HuggingFace, and
for which the original ESPNet14 inference code is used
with a beam size of 3.15

3. Results

3.1. Pre-training and Catastrophic
Forgetting

Catastrophic forgetting is a well-known problem in ma-
chine learning [42] that arises when a system is trained
sequentially on multiple languages or tasks, leading to a
degradation in performance on original domains or lan-
guages [43]. As we follow a two-stage approach, which
is commonly employed in SFMs training [1], we analyze
6https://github.com/hlt-mt/FBK-fairseq
7https://pypi.org/project/jiwer/
8https://pypi.org/project/whisper-normalizer/
9https://hf.co/openai/whisper-medium
10https://hf.co/facebook/hf-seamless-m4t-medium
11https://hf.co/facebook/seamless-m4t-v2-large
12https://hf.co/espnet/owsm_v3.1_ebf
13https://pypi.org/project/transformers/
14https://github.com/espnet/espnet/tree/master/egs2/owsm_v3.1/

s2t1
15We attempted to use a beam size of 5 but the model had out-of-

memory issues even when reducing the batch size.

the conditions in which this phenomenon arises during
the ASR+ST training.
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Figure 1: Average ASR and ST perplexity (ppl) on both English
and Italian up to 500k steps of the training. Due to the evident
worse results achieved by using a 𝑙𝑟 of 1e-3, we stopped the
training curves after 100k steps. The black dashed line is the
ppl of the ASR model from which the training is started.

Figure 1 shows the perplexity (ppl) behavior during the
first 100/500k steps of the FAMA small model training
on the validation sets. We present the results of differ-
ent systems obtained by varying both the learning rate
𝑙𝑟S2 and the sampling probability 𝑝ASR discussed in Sec-
tion 2.3. Lower values of 𝑙𝑟S2 (e.g., 1e-5) lead to worse
performance and are not included in the results. Since
the computational budget for our experiments is limited,
we analyze two cases for the sampling probability: 1)
𝑝ASR=0.5 to obtain a system equally trained on both ASR
and ST tasks, and 2) 𝑝ASR=0.2 to obtain a system trained

https://github.com/hlt-mt/FBK-fairseq
https://pypi.org/project/jiwer/
https://pypi.org/project/whisper-normalizer/
https://hf.co/openai/whisper-medium
https://hf.co/facebook/hf-seamless-m4t-medium
https://hf.co/facebook/seamless-m4t-v2-large
https://hf.co/espnet/owsm_v3.1_ebf
https://pypi.org/project/transformers/
https://github.com/espnet/espnet/tree/master/egs2/owsm_v3.1/s2t1
https://github.com/espnet/espnet/tree/master/egs2/owsm_v3.1/s2t1


Model #params
ASR (WER ↓) ST (COMET ↑)

CV MLS VP AVG CVST2 FLRS
en it en it en it en it it-en en-it

Whisper medium 769M 14.5 10.4 14.2 15.9 8.1 26.8 12.3 17.7 0.801 -
Whisper large-v3 1550M 11.2 6.5 5.0 8.8 7.1 18.8 7.8 11.4 0.825 -
OWSM v3.1 medium 1020M 11.9 12.5 6.6 19.3 8.4 24.0 9.0 18.6 0.636 0.337
SeamlessM4T medium 1200M 10.7 7.8 8.8 11.3 10.2 18.2 9.9 12.4 0.831 0.820
SeamlessM4T v2-large 2300M 7.7 5.0 6.4 8.5 6.9 16.6 7.0 10.0 0.852 0.855
FAMA-ASR small

475M
13.8 8.9 5.8 12.6 7.2 15.7 8.9 12.4 - -

+ joint CTC rescoring 13.9 8.9 5.8 12.4 7.0 14.6 8.9 12.0 - -
FAMA-ASR medium

878M
11.7 7.1 5.1 12.2 7.0 15.9 7.9 11.7 - -

+ joint CTC rescoring 11.7 7.0 5.1 12.2 7.0 14.6 7.9 11.3 - -
FAMA small

475M
13.7 8.6 5.8 12.8 7.3 15.6 8.9 12.3 0.774 0.807

+ joint CTC rescoring 13.6 8.5 5.8 12.8 7.2 14.8 8.9 12.0 0.777 0.804
FAMA medium

878M
11.5 7.0 5.2 13.9 7.2 15.9 8.0 12.3 0.787 0.821

+ joint CTC rescoring 11.5 7.7 5.2 13.5 7.1 14.9 7.9 12.0 0.791 0.818

Table 3
ASR and ST performance of FAMA models and existing SFMs as terms of comparison. The results are reported on CommonVoice
(CV), Multilingual LibriSpeech (MLS), and VoxPopuli (VP) for ASR, and on CoVoST (CVST2), and FLEURS (FLRS) for ST. Best
values are in bold.

more on the unseen task during pre-training, i.e., the ST
task.

As we can see from the curves, a 𝑙𝑟S2 of 1e-3 seems
to be too high for maintaining good ASR performance
while learning a new task (ST). Both in the case in which
the ST training is more boosted (𝑝ASR=0.2) and in the
case in which ASR and ST training is balanced (𝑝ASR=0.5),
we notice a significant increase in the ASR ppl of up
to 0.25 that corresponds to a drop in performance of
3-4 WER on both languages – which, moreover, is not
recovered later on in the training. Therefore, to avoid
catastrophic forgetting arising just in the first steps, we
exclude 𝑙𝑟S2=1e-3 and use 1e-4 for the two-stage training.
Regarding the ASR sampling, we look at the behavior
of the curves for 500k steps (half of the second-stage
training) and notice that the ASR ppl curve with 𝑝ASR=0.5
slowly approaches the original model ppl value while
the one with 𝑝ASR=0.2, despite improving, is not able to
approach the original ppl value. This is counterbalanced
by a lower (hence, better) ppl of the 𝑝ASR=0.2 curve on
ST compared to that of the 𝑝ASR=0.5 curve. However, this
difference, which is about ∼0.2 ppl, is not reflected in the
ST performance, which only improves by 0.005 COMET
points on average. Instead, the difference in terms of
WER is significant, with a quality drop of ∼0.8 WER
across en and it. As a result, we conclude that we avoid
catastrophic forgetting in the two-stage training only by
evenly sampling the ASR and ST tasks during the second
step.

3.2. Comparison with Existing SFMs
In Table 3, we show the results for both ASR and ST of
our FAMA models and SFMs presented in Section 2.4. For
FAMA models, we provide the scores of the ASR-only

model (FAMA-ASR), obtained after pre-training, and of
the final ASR+ST model, as well as the results obtained
through joint CTC rescoring.

Looking at the results of FAMA-ASR, we observe that
the medium model outperforms the small one, with
∼0.8 WER improvements on average both with and
without the joint CTC rescoring. Compared to Whis-
per medium, FAMA achieves better results with FAMA
medium outperforming Whisper by 4.4 WER on en and
6.4 on it while having a similar number of model param-
eters. Remarkable performance is achieved by FAMA
medium also compared to OWSM v3.1 medium, with im-
provements of up to 1.1 WER on en and 7.3 on it, but also
compared to Whisper large-v3, where similar WER
scores are achieved. Instead, SeamlessM4T models, lever-
aging large pretrained models such as wav2vec-BERT
2.0 (which is trained on 4.5 million hours) and NLLB
(which is trained on more than 43 billion sentences), still
outperform FAMA, with the v2-large scoring an in-
credibly low WER on CommonVoice also compared to
a strong competitor as Whisper large-v3. Looking at
the ASR results of the final FAMA models, we observe
that the WER remained almost unaltered compared to
the ASR-only model, as already discussed in Section 3.1.
Regarding ST results, we notice that FAMA models out-
perform OWSM v3.1 medium, with an improvement of
up to 0.141 COMET by FAMA small and 0.152 by FAMA
medium while still struggling to achieve the performance
of Whisper and SeamlessM4T.

These mixed outcomes–competitive ASR performance
even against larger non-open models but lower ST
performance–demonstrate both the feasibility of build-
ing high-quality open-science SFMs and the need for ini-
tiatives dedicated to creating OS-compliant ST datasets
with human references to bridge the gap with non-open



Model Batch Size xRTF (↑)
en it AVG

Whisper medium 8 13.3 10.9 12.1
Whisper large-v3 4 7.9 6.5 7.2
SeamlessM4T medium 2 28.5 26.2 27.4
SeamlessM4T v2-large 2 13.7 13.3 13.5
FAMA small 16 57.4 56.0 56.7
FAMA medium 8 39.5 41.2 40.4

Table 4
Computational time and maximum batch size for Whisper, SeamlessM4T, and FAMA models. Best values are in bold.

models.

3.3. Computational Time
As an additional comparison, we evaluate the through-
put of the SFMs on a single NVIDIA A40 40GB. The
throughput, measured in xRTF (the inverse of the real-
time factor),16 is calculated as the number of seconds
of processed audio divided by the compute time in sec-
onds. The test set used for this performance evaluation
is CommonVoice on both en and it with a total duration
of, respectively, 26.9 and 26.4 hours. For each model, we
report the maximum batch size possible spanning in the
range 2, 4, 8, and 16, as higher values resulted in out-of-
memory issues with all models. The results are reported
in Table 4.

We notice that Whisper models are the slowest ones,
with an average xRTF of 12.1 for medium and 7.2 for
large-v3, making them ∼3-6 times slower than FAMA
medium and ∼5-8 than FAMA small. These results can
be attributed to the architectural design of Whisper mod-
els that apply an ×2 audio subsampling compared to
the commonly used ×4 (as in FAMA) and introduce a
lot of padding in shorter sequences to achieve the fixed
30-second length. The Seamless models, despite having
no extra padding (as FAMA) and a greater audio sub-
sampling of ×8, are ∼2 times faster than Whisper ones
but still 1.5-3 times slower for, respectively, medium and
v2-large, compared to FAMA medium and 2-4 com-
pared to FAMA small, making the FAMA model family
the fastest by a large margin.

3.4. Gender Bias Analysis
We also measure the gender bias disparity between male
and female performance using the ASR benchmark pro-
posed by Attanasio et al. [44]. The results are presented in
Table 517 and are measured as absolute performance gaps

16https://github.com/NVIDIA/DeepLearningExamples/blob/
master/Kaldi/SpeechRecognition/README.md#metrics

17Results and per-language statistics are available on the
original leaderboard: https://huggingface.co/spaces/g8a9/
fair-asr-leaderboard

Model Gap R Gap S AVG
Whisper large-v3 0.5584 0.9711 0.7648

SeamlessM4T v2-large 0.4485 2.3271 1.3878
FAMA-ASR small 0.0250 1.7191 0.8721

FAMA-ASR medium 0.4074 2.0558 1.2316
FAMA small 0.7569 1.5642 1.1605

FAMA medium 0.2165 1.7661 0.9913

Table 5
Absolute WER quality gaps between female and male subsets,
divided into read (Gap R) and spontaneous (Gap S) speech.

between female WER and male WER scores obtained on
CommonVoice 17 and VoxPopuli.

We can observe that FAMA-ASR small obtained the
smallest–hence, best–performance gap between male and
feminine transcription from read speech, with a gap be-
ing an order of magnitude smaller than all other models.
When moving to the spontaneous speech, instead, Whis-
per large-v3 obtains the best result. Overall, Whisper
achieves the best average result, followed by FAMA-ASR
small and FAMA medium, which are the only models
scoring less than a 1.0 WER difference. All FAMA models
can outperform Seamless M4T v2-large, achieving an
average gap reduction of 0.16 to 0.52.

4. Conclusions
In this paper, we addressed the challenges posed by the
closed nature of existing SFMs, such as limited accessibil-
ity to training data and codebases, by introducing FAMA,
the first large-scale open-science SFM for English and
Italian. Trained on over 150k hours of exclusively OS
speech, FAMA ensures full transparency, with all arti-
facts released under OS-compliant licenses. Additionally,
we contributed a new collection of ASR and ST pseu-
dolabels for about 16k hours of speech data, and more
than 130k hours of English and Italian automatic trans-
lations. Results show that FAMA models outperform
OWSM on both ASR and ST and also achieve compara-
ble ASR results to Whisper while being up to 8 times
faster. By providing the community with fully accessible

https://github.com/NVIDIA/DeepLearningExamples/blob/master/Kaldi/SpeechRecognition/README.md#metrics
https://github.com/NVIDIA/DeepLearningExamples/blob/master/Kaldi/SpeechRecognition/README.md#metrics
https://huggingface.co/spaces/g8a9/fair-asr-leaderboard
https://huggingface.co/spaces/g8a9/fair-asr-leaderboard


resources, FAMA bridges the gap between advances in
speech technology and open science principles, enabling
fair evaluation, broader participation, and inclusivity. Fu-
ture work will focus on extending FAMA to additional
languages with the ultimate goal of further expanding
the open science ecosystem to speech technologies.
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