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Abstract
In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities across a variety of linguistic

and cognitive tasks. This study investigates whether such models can succeed in one of Europe’s most selective academic

assessments: the Italian medical school entrance exam. We evaluate a wide selection of open-weights LLMs, ranging from

natively Italian-pretrained models to multilingual and Italian-specialised variants, on a benchmark dataset comprising over

3,300 real-world exam questions across five knowledge domains. Our experiments systematically explore the impact of

language-specific pretraining, model size, prompt formulation and instruction tuning on exam performance. Results show

that large multilingual models, particularly the Gemma-2-9B family, consistently outperform all other systems, surpassing the

official admission threshold under all prompting settings. In contrast, models trained exclusively on Italian data fail to reach

this threshold, even with larger architectures or instruction tuning. Additional analyses reveal that high-performing models

display lower positional bias and greater inter-model consistency. These findings suggest that cross-domain reasoning and

multilingual pretraining are key to handling multi-disciplinary educational tasks.
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1. Introduction
The Italian medical school entrance exam is widely re-

garded as one of the most competitive and demanding

standardized tests in Europe. Each year, approximately

60-65,000 aspiring students face this rigorous assess-

ment
1

, which consists of 60 multiple-choice questions

spanning biology, chemistry, physics, mathematics, and

logical reasoning. Preparation typically begins as early

as the penultimate year of high school, with students

dedicating countless hours to theoretical study, targeted

quizzes, and full-length simulated exams. Despite this

intense effort, only a portion of students manage to be

included in the national ranking: for example, in 2019
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only 42.7% achieved the minimum score, while in 2020

this rose to 68.3%
2

. These figures highlight the exam’s

reputation as a formidable educational hurdle and a criti-

cal turning point in the academic lives of thousands of

ambitious young individuals.

Against this backdrop, it is natural to ask what kind of

cognitive skill set is truly necessary to succeed in such

a highly selective process. Within this context, in an

era increasingly shaped by Artificial Intelligence (AI), a

provocative question arises:

To date, could a powerful Large Language Model (LLM),
trained on vast data of human knowledge and capable of
performing complex reasoning tasks, actually achieve what
so many well-prepared students cannot? Could it earn a
high enough score to gain admission to an Italian medical
school?

LLMs represent a significant paradigm shift within

Natural Language Processing (NLP), consistently demon-

strating exceptional performance across diverse linguis-

tic and cognitive tasks. Recent advancements have il-

lustrated that these models frequently match or exceed

traditional supervised methodologies and, in certain in-

stances, surpass established human benchmarks [1, 2].

Complementary works in Italian have shown that GPT-

style models can reach near-human scores on the na-

tional medical-specialty exam [3], introduced CLinkaRT
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for clinical information extraction [4], and released na-

tive large-scale benchmarks such as INVALSI-MATE/ITA

[5], Mult-IT [6] and the broader CALAMITA suite [7],

laying the groundwork for systematic Italian-language

evaluation.

With proven capabilities in natural language compre-

hension and logical reasoning, LLMs have exhibited sub-

stantial potential in educational contexts, offering instant

personalized feedback, effectively summarizing intricate

information, and even simulating complex human-like

problem-solving processes.

However, despite their strong capabilities, previous

studies have pointed out some limitations of LLMs. In

particular, these models can be very sensitive to small

changes in the prompt [8, 9]. One major issue is how

the arrangement of elements within the prompt affects

their performance, especially in tasks that require under-

standing and reasoning. For example, prior research has

shown that LLMs are sensitive to both the specific few-

shot examples provided and the order in which answer

choices are presented [10, 11].

In this work, our key contribution is an in-depth anal-

ysis of how current LLMs, both Italian-specific and mul-

tilingual, perform on the multi-choice, multi-disciplinary

Italian medical school entrance exam, investigating the

following factors that may affect the performance:

Language-specific pre-training. We compare gen-

eral multilingual models, both with multilingual pre-

training and Italian specialization, and models specifi-

cally pre-trained in Italian, to assess the role of language-

specific knowledge in a complex downstream task.

Model size. We evaluate models of different sizes

to understand how parameter count influences perfor-

mance.

Prompt design. We explore the impact of prompt

formulation, including zero-shot vs. few-shot prompting,

as well as the effects of prompt length and specificity.

Instruction tuning. We analyze how models that

underwent instruction tuning (training on datasets de-

signed to follow human-like task instructions) perform

in comparison to base LLMs when faced with exam-style

tasks.

2. Dataset
The employed corpus

3

consists of the official Italian med-

ical school entrance exams administered in past years,

collected from the public archive of the Ministry of Ed-

ucation, University and Research (MIUR)
4

. As such, it

faithfully reproduces the exact wording, structure, and

difficulty level encountered by real candidates.

3
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Content and scale. The benchmark consists of 3, 301
high-quality items covering five domains (Table 1). Each

item includes a question text (or stem) along with five

multiple-choice answers, only one of which is correct.

This structure supports two task formulations: a classi-
fication task, when the question is presented with the

answer options, and a generation task, when only the

question is provided and the model is expected to pro-

duce the correct answer. In our experiments, we adopt

the classification setting, supplying both the question

and the five candidate answers to the model.

Scoring Scheme. Each item is graded individually and

then aggregated through a three-stage pipeline:

Per-Item Mark. A correct answer yields +1.5 points,

an omission 0, and an incorrect answer −0.4. Negative

marking discourages guessing and keeps the expected

value of random choice below zero.

Per-Domain Average. Let 𝑠𝑖𝑗 be the mark obtained

on the 𝑗-th question of domain 𝑖 ∈ {bio, chem, . . . } and

𝑛𝑖 the number of items in that domain (Table 1). The

mean score for the domain is

𝑠𝑖 =
1

𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝑠𝑖𝑗 ∈ [−0.4, 1.5]. (1)

Weighted Aggregation. Since domains contribute

unequally to the final mark, mirroring both the weighting

and question distribution of the actual exam, we adopt

the official weights 𝑤𝑖 shown in Table 1 to compute the

overall average per item:

𝑠 =
∑︁
𝑖

𝑤𝑖 𝑠𝑖 ∈ [−0.4, 1.5]. (2)

Finally, the average is rescaled to the admission-test scale
of [−24, 90] by

𝑆 = 60 𝑠. (3)

Table 1
Number, distribution, and weights 𝑤𝑖 of questions per domain,
as used in Eq. (2).

Domain # Questions Distribution Weight 𝑤𝑖

Biology 1 180 23/60 0.3833
Chemistry 1 009 15/60 0.2500
Mathematics & Physics 655 13/60 0.2167
Logic & Reasoning 212 5/60 0.0833
General Knowledge 245 4/60 0.0667

Total 3 301 60/60 1.0000

Hence a model (or a student) that answers everything

correctly attains 𝑆max = 90, whereas one that is wrong

on every question falls to 𝑆min = −24. Conversely, a

purely random guesser (i.e., one that selects an answer

https://huggingface.co/datasets/room-b007/test-medicina
https://www.miur.gov.it


uniformly at random and is therefore correct with proba-

bility 1/5) has an expected per-item score of

𝑠̄ = 1
5
· 1.5 + 4

5
· (−0.4) = −0.02,

leading to an overall expected mark of

𝑆rand = 60× 𝑠̄ ≈ −1.2

According to the official admission rules, only candi-

dates who score at least 20 out of 90 are included in the

national ranking. This threshold is fixed each year and

represents the minimum requirement for consideration,

although substantially higher scores are typically needed

to secure a study place.

3. Large Language Models
Recent progress in open-weights LLMs has produced

Italian-centric and Italian-specialised systems that still

outperform much larger multilingual baselines on the

EvalITA benchmark
5

[12]. In this study, we select from

the EvalITA leaderboard the top-performing models with

fewer than or equal to 9B parameters, balancing state-

of-the-art performance and computational feasibility, and

we supplement them with four Italian-specialist models

(DanteLLM [13], Cerbero [14], Loquace, Zefiro [15, 16])

that satisfy the same parameter budget but were not sub-

mitted to the leaderboard. This guarantees architectural

diversity (LLaMA and Mistral families) while maintaining

computational feasibility.

Selection Criteria Models were selected to facilitate

the analysis of the factors outlined in Section1, while

maintaining a constant computational budget. The selec-

tion criteria are summarised below:

Language of Pre-Training. We included (i) purely-

Italian LLMs trained from scratch on Italian corpora, (ii)

multilingual models that were later specialised to Italian

and (iii) non-specialised multilingual models.

Model Size (Scaling). Families of LLMs offering sev-

eral sizes in the 0.35 B - 9 B range, allowing us to gauge

the effect of scale while holding architecture and linguis-

tic coverage constant.

Instruction Tuning. Whenever a base and an

instruction-tuned (or DPO-tuned) variant coexist, we

included both.

Architectural Diversity. We cover the three

dominant open-weights backbones available with

an Italian specialisation under 9 B parameters:

LLaMA /Gemma /Mistral [17, 18, 19].

5
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Selected Models Table 2 lists every model considered

in our experiments, organized by pre-training origin (Ital-

ian vs. multilingual) and instruction-tuning status. Each

entry reports parameter count, original paper (if any)

and the Hugging Face identifier.

This curated pool encompasses a wide range of model

scales, pre-training strategies, instruction-tuning vari-

ants and backbone architectures, enabling us to rigor-

ously evaluate how these factors affect each model’s abil-

ity to tackle the Italian medical-school entrance test.

Data Leakage To the best of our knowledge, none of

the questions included in the dataset were seen during

the pre-training or fine-tuning of the evaluated models.

The official model cards and papers explicitly exclude

proprietary multiple-choice exam content, including the

MIUR admission tests. While we cannot entirely rule

out the possibility of indirect exposure (e.g., paraphrased

content shared in online forums), we consider the risk of

such leakage to be minimal.

4. Experiments

4.1. Experimental Setup
All experiments are performed on the dataset described

in Section 2 and the models detailed in Section 3. No

parameter is updated at any point: every model is used

solely in inference mode. Unless otherwise specified in

the original checkpoint, all models are queried with their

default generation parameters (temperature = 1.0, top_p

= 1.0, top_k = 50, repetition_penalty = 1.0); no hyper-

parameter tuning is performed.

Few-Shot Selection. For each topic of the dataset we

randomly sample exactly two in-context demonstrations.

These demonstrations are fixed once and reused across

all models, prompts, and runs. In the zero-shot setting

the demonstrations are omitted, while in the few-shot
setting they are inserted directly into the prompt as fixed

in-context examples.

Prompting Strategies. Instruction-tuned (IT) check-

points are queried under two conditions:

plain — the prompt text in Table 3 is provided as a

single user message, identical to the one used for base

models;

chat-template — the same text is embed-

ded in the model’s native chat schema via

tokenizer.apply_chat_template.

https://huggingface.co/spaces/evalitahf/evalita_llm_leaderboard


Model Base Architecture Params Instr. Tuned Checkpoint and Reference

Non-Specialised Multilingual Models
Gemma-2 [18] Gemma 2 B ✗ google/gemma-2-2b
Gemma-2 [18] Gemma 2 B ✓ google/gemma-2-2b-it
Gemma-2 [18] Gemma 9 B ✗ google/gemma-2-9b
Gemma-2 [18] Gemma 9 B ✓ google/gemma-2-9b-it

Multilingual Models Specialised in Italian
DanteLLM [13] LLaMA 7 B ✓ rstless-research/DanteLLM-7B-Instruct-Italian-v0.1
LLaMAntino-2 [15] LLaMA 7 B ✓ swap-uniba/LLaMAntino-2-7b-hf-dolly-ITA
Cerbero [14] Mistral 7 B ✓ galatolo/cerbero-7b
Loquace Mistral 7 B ✗ cosimoiaia/Loquace-7B
Loquace Mistral 7 B ✓ cosimoiaia/Loquace-7B-Mistral
Zefiro [15, 16] Mistral 7 B ✓ mii-community/zefiro-7b-dpo-ITA

Pre-Trained Natively in Italian
Minerva [20] Mistral 350 M ✗ sapienzanlp/Minerva-350M-base-v1.0
Minerva [20] Mistral 1 B ✗ sapienzanlp/Minerva-1B-base-v1.0
Minerva [20] Mistral 3 B ✗ sapienzanlp/Minerva-3B-base-v1.0
Minerva [20] Mistral 7 B ✗ sapienzanlp/Minerva-7B-base-v1.0
Minerva [20] Mistral 7 B ✓ sapienzanlp/Minerva-7B-instruct-v1.0
Italia-9B Mistral 9 B ✓ iGeniusAI/Italia-9B-Instruct-v0.1

Table 2
Overview of the LLMs considered in this work, grouped by type and listing base architecture, parameter count, instruction-
tuning status, and checkpoint reference.

Hardware and Precision. All runs are executed on a

single NVIDIA A100 80GB GPU, with torch.float16
weights.

Evaluation Metrics. Model performance is assessed

with four complementary metrics:

(i) Overall score 𝑆 is computed by first averaging the

per-item marks using the official domain weights 𝑤𝑖 (Ta-

ble 1) to obtain a weighted score 𝑠 ∈ [−0.4, 1.5], and

then applying the linear rescaling 𝑆 = 60 · 𝑠, which

maps the result to the standard entrance-exam range

[−24, 90] expressed in sixtieths, as explained in Section

2. Since our setup assumes that the model always selects

an answer among the given options, we do not consider

the possibility of no response. Consequently, each item

is scored either +1.5 for a correct answer or −0.4 for an

incorrect one.

(ii) Per-topic score 𝑆𝑡 reports the same quantity com-

puted separately for each domain (Biology, Chemistry,

Mathematics& Physics, Logic, General Knowledge).

(iii) Overall Macro-averaged 𝐹1 aggregates precision

and recall uniformly across the five answer classes, mak-

ing it robust to the pronounced class imbalance of the

dataset, as shown in Table 1.

(iv) Per-topic macro-averaged𝐹1 applies the same statis-

tic within each domain 𝑡, highlighting areas where a

model may be disproportionately strong or weak despite

similar global performance.

4.2. Prompt Design
The study adopts three system prompts that differ system-

atically in both length and semantic richness, allowing

us to examine how sensitive each model is to the amount

of contextual information it receives before attempting

the task. The three system prompts are presented in

Appendix A.

P1 is an ultra-minimal template that provides nothing

more than the formal task instruction: the model is told

that it will face a five-option multiple-choice question

and must output only the index of the correct answer. It

contains no role play, no mention of the entrance exam,

and no hint about the underlying knowledge domains.

This prompt therefore functions as a lower bound on

instruction length.

P2 retains the same output constraint but introduces a

concise role play: the model is asked to “simulate a can-
didate who has studied intensively for the Italian medical
admission test”. This framing injects moderate priming

about the exam context and about the desired mindset

(efficiency and accuracy) while remaining compact.

P3 is the most verbose instruction. It explicitly lists six

knowledge areas (Logic, Biology, Chemistry, Mathemat-

ics, Physics, and General Culture), thereby grounding

the task in the domains required by the real-world exam.

The prompt also reiterates the number-only policy in

boldface to maximise compliance.

Importantly, all three prompts prescribe the identi-

cal answer format: a single digit in {1, . . . , 5} with no

accompanying text or explanation. Consequently, any

variation in performance, positional bias, or inter-model

agreement can be attributed to the incremental context

rather than to differences in expected output style.

4.3. Qualitative Analysis
We complement the quantitative evaluation with a qual-

itative analysis aimed at assessing the robustness and

behavioural patterns of the tested models.

First, we analyse positional bias, i.e., the tendency

https://huggingface.co/google/gemma-2-2b
https://huggingface.co/google/gemma-2-2b-it
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(a) Pretrained natively in Italian - F1 (b) Multilingual specialised in Italian - F1 (c) Non-specialised multilingual - F1

(d) Pretrained natively in Italian - Final

score

(e) Multilingual specialised in Italian - Fi-

nal score

(f) Non-specialised multilingual - Final

score

Figure 1: Performance comparison across model families and prompting setups. Top row: macro-averaged 𝐹1 scores. Bottom
row: final admission scores (red line = minimum threshold for national ranking). Prompting conditions: zero-shot (ZS),
zero-shot with instruction formatting (ZS IT), few-shot (FS), few-shot with instruction formatting (FS IT).

of a model to overproduce certain answer indices (e.g.,

“1” or “3”) regardless of the question. For each model

and prompt, we compute how frequently each option

(1-5) is selected. A uniform distribution would indicate

an unbiased decision process, whereas strong deviations

suggest systematic preferences unrelated to content [21].

Second, we investigate inter-model agreement to

assess how similarly different models behave when

prompted in the same way. For each prompt and setup,

we compare the predicted answers across all model pairs

and measure the percentage of matching responses. This

reveals which models tend to converge on the same deci-

sions and thus behave similarly, and which ones diverge

more often.

Together, these two analyses provide insight into the

internal consistency of each model and the structural

similarity between them.

5. Results and Discussion
In this section, we present and analyse the performance

of all evaluated models based on two key metrics: macro-

averaged F1 score and final admission score (Figure 1).

The reported values are computed by averaging results

Figure 2: Final admission scores across exam disciplines
(Prompt 3), comparing the best-performing model in each
family under optimal prompting conditions

across three distinct prompt formulations, as we observed

a high degree of consistency across prompts for both

metrics.



Figure 3: Distribution of selected answer positions on Prompt 3, shown separately for each model family. Crosses highlight
the best model in each group.

Figure 4: Pairwise answer-overlap on Prompt 3. Each cell
reports the percentage of identical predictions between two
models; darker shades signal stronger agreement. Models are
grouped by family.

The analysis is structured around four main factors

hypothesized to influence model performance: language-

specific pre-training, model size, prompt design, and in-

struction tuning.

Language-Specific Pre-Training The results high-

light a clear stratification based on language specializa-

tion. Non-specialised multilingual models, particularly

gemma-2-9b-it and gemma-2-9b, consistently outperform

other classes, achieving the highest F1 scores (≈74-76%)

and final scores (≈58-60) across all settings. Notably,

both models exceed the admission threshold of 20 in

every configuration.

In contrast, natively Italian-pre-trained models, de-

spite being trained from scratch on Italian corpora, per-

form significantly worse. Their F1 scores rarely exceed

33%, and none of them reach the admission threshold

under any condition. Similarly, multilingual models spe-

cialised in Italian (e.g., dantellm, cerbero-7b) generally

fall short of the top-performing multilingual baselines,

though some (e.g., cerbero-7b) do surpass the admission

threshold in specific few-shot setups. This suggests that

pre-training solely on Italian data may not suffice for

general-domain, multi-subject tasks like the medical en-

trance exam, which likely require both factual recall and

cross-domain reasoning competencies that benefit from

broader multilingual corpora. While multilingual models

perform better, this advantage might reflect the greater

scale and heterogeneity of their pretraining data, rather

than the effect of multilinguality per se.

Model Size Across model groups defined by pre-

training language origin, increasing model size generally

correlates with improved performance, with only a few

exceptions. In the Gemma series, for instance, the 9B

models (Gemma-2-9b and Gemma-2-9b-it) significantly

outperform their 2B counterparts, particularly in terms

of F1 score. The difference is striking: Gemma-2-9b-it

achieves 74% F1 in zero-shot settings, while Gemma-2-2b-

it remains below 50%. This scaling effect, however, proves

less predictable among models trained natively on Italian

corpora or tailored to Italian. Within the Minerva family,

performance increases modestly from 350M to 7B, though

overall results remain limited. Moreover, Minerva-7B-

instruct shows no substantial advantage over Minerva-

3B-base, and Loquace-7B-Mistral underperforms relative

to Cerbero-7B, despite similar model architecture and

parameter count. Overall, larger models tend to perform



better, but these results suggest that size must be com-

bined with effective training objectives and data coverage

to yield consistent gains.

Prompt-Template Comparison Figure 1 reports the

mean F1-score averaged across the three prompt tem-

plates; for nearly all models, the whiskers are tightly

clustered, reflecting how little the specific wording shifts

the central tendency. Only a few isolated exceptions

emerge - e.g., Zefiro underperforms with P2, Cerbero

shows higher variance in the FS IT setting, and gemma-

2b displays slight sensitivity to prompt verbosity. When

runs are examined separately, however, a small yet consis-

tent ranking emerges: the minimalist P1 systematically

attains the highest scores, the verbose P3 lands in the

middle, and P2 is invariably the weakest. Although the

gap is only about 1-2 F1 points, its persistence across

the entire model suite indicates that concise phrasing

reduces ambiguity, whereas the intermediate framing of

P2 introduces just enough noise to dampen performance.

Prompt Design Prompt formulation plays a signif-

icant role in modulating model output. We evaluated

instruction-tuned models under four prompting condi-

tions: zero-shot (ZS), zero-shot with instruction-tuned

formatting (ZS IT), few-shot (FS), and few-shot with

instruction-tuned formatting (FS IT). All other non-

instruction models were tested only in the ZS and FS

settings.

Overall, few-shot prompting leads to improved F1

scores compared to zero-shot, particularly for mid-tier

models such as DanteLLM and Cerbero, which show

gains of approximately 5-10 points in F1. In contrast,

high-performing models like gemma-2-9b-it achieve

strong results even in zero-shot settings, indicating ro-

bustness to minimal context and reduced reliance on

explicit examples.

Interestingly, zero-shot with instruction-tuned format-

ting often performs comparably to few-shot, especially

for models with strong instruction-following capabilities.

However, adding instructions to few-shot prompts does

not consistently improve performance; for instance, Ze-

firo and Loquace exhibit a decline in F1 score compared

to the few-shot setting without instructions, likely due

to prompt verbosity introducing cognitive overload or

disrupting the model’s internal heuristics [22, 23]. These

findings reinforce prior work on large language model

sensitivity to prompt phrasing and structure [8, 9], and

underscore the need for carefully tuned prompt engi-

neering, particularly in lower-resource or lower-capacity

models.

Instruction Tuning Instruction tuning provides con-

sistent improvements across different model families. For

example, the instruction-tuned gemma-2-2b-it outper-

forms its base counterpart, gemma-2-2b, by more than 20

𝐹1-score percentage points across all prompting condi-

tions. Similar gains are observed for loquace-7b-mistral

over the untuned loquace-7b, and for minerva-7b-instruct

compared to minerva-7b-base. The impact of instruc-

tion tuning is particularly pronounced in smaller models.

While the performance gap between gemma-2-9b and

gemma-2-9b-it remains modest (typically around 2-3 𝐹1-

score percentage points), tuning significantly enhances

the usability of smaller variants, suggesting that instruc-

tion tuning complements model scaling and is especially

valuable in resource-constrained contexts [24]. Neverthe-

less, instruction tuning alone is not sufficient to ensure

competitive performance. Models such as zefiro-7b-dpo-

ita and italia-9b-instruct, despite being instruction-tuned,

still underperform relative to top-tier generalist models.

This underscores the importance of tuning quality and

alignment with the target domain.

Interestingly, instruction tuning appears to be most

effective in the zero-shot setting, likely by helping the

model better align with the intent of the prompt. How-

ever, when combined with few-shot exemplars, it can

sometimes introduce redundancy or ambiguity, poten-

tially hindering performance.

5.1. Per-Domain Performance
To complement the aggregate metrics discussed above,

we conducted a topic-wise analysis of model perfor-

mance, reporting final admission scores separately for

each discipline in the entrance exam.

This additional evaluation aims to reveal domain-

specific strengths and weaknesses that may be masked

by overall scores, and to better understand how differ-

ent model families handle the heterogeneous cognitive

demands of the test.

For consistency, we selected the best-performing

model within each family, prioritizing the few-shot set-

ting whenever it led to superior results. The only excep-

tion is the family of non-specialised multilingual models,

where the best performance was achieved in the zero-

shot condition, though this setting proved competitively

robust, even relative to few-shot prompting.

The selected models are:

minerva-7b-instruct-v1.0 (natively Italian-

pretrained family)

Cerbero-7b (Italian-tuned multilingual family)

gemma-2-9b-it (non-specialised multilingual fam-

ily)

Given the consistency across prompts, we report re-

sults obtained with Prompt 3, which corresponds to the

most verbose instruction. The results, summarized in Fig-

ure 2, show that gemma-2-9b-it achieves the highest final



admission scores across all five disciplines, with particu-

larly strong margins in Biology and Knowledge & Skills.

Cerbero-7b displays moderate performance overall but

remains consistently below Gemma, with its best result

also in Biology. Minerva-7b-instruct, despite instruction

tuning, obtains markedly lower scores across the board,

with final admission scores that remain below 40% in all

subjects. The relative ranking of the models remains sta-

ble across domains, suggesting that global performance

differences persist even when decomposed by topic.

Interestingly, all models achieve their highest marks

in Biology and General Knowledge, two domains that

largely reward factual recall, the ability to retrieve canon-

ical facts memorised during pre-training (e.g., “mitochon-

dria produce ATP”) [25]. In sharp contrast, Mathemat-

ics & Physics and Logic & Reasoning are consistently

the hardest areas, even for the best-performing Gemma

checkpoint, because they demand multi-step quantita-

tive or set-theoretic reasoning that current LLMs still

struggle to perform reliably [26, 27]. Recent work further

shows that simply scaling up parameters does not bridge

this gap: effective reasoning requires mechanisms that

disentangle memory retrieval from inference, rather than

larger parametric memory alone [28].

The discipline-level analysis confirms the trends ob-

served in the global scores, underscoring the persistent

gap between non-specialized multilingual models and

those trained exclusively on Italian data. These results

highlight that cross-domain generalization remains a crit-

ical differentiator among models. They also reveal that

even high-performing systems can display significant

weaknesses in specific domains, an important consider-

ation for real-world applications. Overall, the findings

emphasize the crucial role of both model scale and pre-

training diversity in developing LLMs with strong multi-

disciplinary capabilities.

5.2. Qualitative Analysis
Positional Bias. For every model we counted how its
answers are distributed across the five option slots: the

resulting percentages make up the box-plots in Figure 3
6

.

Native-Italian Models The native-Italian models,

cyan boxes, peak around 70% on option 2, and two sys-

tems select it in every single question. Such consistency

betrays a positional shortcut: the model “trusts” the sec-

ond slot more than the content it contains.

Italian-Specialised Multilingual Models Italian-

specialised multilingual models, presented with the or-

ange distributions, still favour label 2, but the median

drops to roughly 45% and the whiskers now range from

≈ 25% to 90%. Extra Italian supervision therefore weak-

6
Shown for Prompt 3, the richest prompt; Prompts 1 and 2 lead to

the same qualitative picture.

ens, yet does not eliminate, the tendency to latch onto a

preferred position.

General Multilingual Models General multilingual

models scores, shown in green, cluster close to the 20%

baseline expected from random choice, with no extreme

outliers. These models appear to read the answers rather

than the position, and they also lead our quantitative

table, hinting at a link between genuine understanding

and low positional bias.

Crosses mark the best model in each family: Minerva
7B-instr (blue), Cerbero-7B (red) and Gemma-2 9B-it
(purple). Gemma and Cerbero stay comfortably inside

their inter-quartile bands, whereas Minerva still predicts

about 40% of its answers as label 2, illustrating that even

the best native-Italian model has some residual bias.

Taken together, the figure draws a clear line: positional

bias is most pronounced in smaller, language-specific

models, softens with targeted fine-tuning, and is almost

absent in large multilingual LLMs. The trend mirrors

overall performance, suggesting that as models learn

to solve the task they naturally stop relying on posi-

tional shortcuts. Monitoring this bias might offer a quick,

model-agnostic check on whether apparent gains stem

from real comprehension or from gaming the answer

format. Concrete examples of typical model errors, in-

cluding failures in numerical reasoning and logical mini-

mization, are provided in Appendix B.

Inter-Model Agreement To gauge how closely the

models behave, we compute for every pair the percentage

of identical predictions on Prompt 3 and visualise these

overlaps in Figure 4.
7

General Overlap. Figure 4 reveals two compact

blocks of high agreement. The first appears as a com-

pact central block along the diagonal and involves the

Minerva family: the four base checkpoints (1B, 350M,

3B, 7B) plus the instruction-tuned variant share ≥ 60%
identical answers, well above the ≈ 35% background

level observed between unrelated models, and, in line
with the positional-bias analysis, this consensus largely

reflects their tendency to pick the same (often incorrect)

option. Interestingly, scaling Minerva from 350 M to 7 B

parameters does little to break this uniformity: the 3 B -

7 B pair overlaps by ≈ 65%, only marginally higher than

the 350 M - 1 B pair (≈ 61%), suggesting that increased

capacity amplifies the same bias instead of diversifying

behaviours.

The second block, smaller but denser, occupies the

upper-left portion of the diagonal and links Gemma-2

9B with its instruction-tuned sibling (Gemma-2 9B-it).

Their overlap exceeds 75%; unlike Minerva, they agree

mostly on correct answers, underscoring their stronger

7
Prompts 1 and 2 show the same qualitative pattern.



underlying capability. A size effect is evident here too:

Gemma-2 2B and its instruction-tuned counterpart align

at ≈ 55%, noticeably lower than the 9 B pair, hinting

that larger multilingual backbones converge toward more

stable (and more accurate) decision patterns.

Between these two extremes sit the multilingual models
specialised in Italian, such as Cerbero-7B, DanteLLM-

7B, and LLaMantino-2 7B. They form a looser band of

mid-level agreement (45-60%), often acting as a bridge:

they overlap moderately with Gemma while retaining

some affinity with native-Italian systems. The pattern

mirrors their performance table these models outperform

Minerva yet trail the Gemma large pair, indicating that

Italian-specific fine-tuning narrows the gap without fully

matching the breadth of a high-capacity multilingual

pre-training.

Outside the highlighted blocks agreement drops

sharply, especially between native-Italian and general

multilingual systems, supporting the idea that language-

specific pre-training steers models toward distinct deci-

sion patterns.

Topic-Wise Agreement (see Appendix C). Topic-

specific heat-maps paint a similar picture with nuanced

shifts:

Biology and Chemistry closely reflect the global pat-

tern: Minerva models cluster tightly, while Gemma leads

a smaller high-accuracy duo, confirming that factual dis-

ciplines accentuate family-specific biases.

In Logic & Reasoning, the Minerva block tightens

even further, with overlaps reaching ≥ 70%, implying

that reasoning errors are strongly correlated across those

checkpoints.

Mathematics & Physics show the widest dispersion:

cross-family overlaps fall below 40% for most pairs, sug-

gesting numerical items provoke model-specific heuris-

tics rather than common patterns.

General Knowledge falls in between, exhibiting mod-

erate agreement across the board.

Altogether, these observations confirm the main find-

ing: models that share pre-training data and objectives

tend to converge on the same answers while larger,

broadly-trained multilingual baselines remain both accu-

rate and mutually consistent. Model size amplifies these

trends, and Italian-specialised multilingual checkpoints

occupy an intermediate space, benefiting from targeted

fine-tuning yet still trailing the strongest generalist pair.

6. Conclusions
Large multilingual LLMs have begun to clear the Italian

medical-school admission bar, but they are still far from

matching the level reached by human examinees. On

the 3 301-question benchmark, the 9-billion-parameter

Gemma-2 family scored 58-60 / 90 with macro-𝐹1 around

75%, comfortably above the official ranking threshold of

20. A handful of Italian-tuned multilingual checkpoints

(e.g. Cerbero-7B) also edged past the cut-off in favourable

prompting conditions, whereas every natively Italian

model remained well below it.

Detailed error analysis confirms that genuine reason-

ing remains an open challenge. Even top models stumble

on Logic and on Mathematics & Physics and display

residual positional shortcuts, signalling reliance on sur-

face cues rather than deep understanding. Bridging this

gap will demand progress in numerical and deductive

reasoning, stronger defences against prompt variability,

and tighter integration with external tools and retrieval.

In future work, we plan to extend the evaluation to a

cloze-style, open-ended generation setting, where models

must produce the correct answer without being shown

the five multiple-choice options. This format may offer a

more faithful assessment of their reasoning abilities and

reduce positional biases. The dataset is already formatted

to support this task. However, given that only a subset

of LLMs currently achieves sufficient performance in the

classification setting, such a shift could pose an even

greater challenge. In addition, we plan to carry out a

systematic exploration of decoding strategies and hyper-

parameters to quantify how sensitive exam performance

and answer stability are to these settings. Such ablations

might provide deeper insights into model robustness and

optimal inference configurations.
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A. Prompts
The study adopts three system prompts that differ system-

atically in both length and semantic richness, allowing us

to examine how sensitive each model is to the amount of

contextual information it receives before attempting the

task. The three system prompts are presented in Table 3.

B. Concrete answer examples
To illustrate the kinds of mistakes made by the top-

performing model (gemma-2-9B-it, prompt 3), we report

two representative items: one from the Mathematics &

Physics subset and one from the Logic & Reasoning sub-

set, together with the label and the model’s prediction.

Each question is shown first in Italian and then in English.

Mathematics & Physics

Italian
Quanto vale il rapporto tra il volume e la superficie di un
cilindro di raggio 6 cm e altezza 12 cm?
English
What is the ratio between the volume and the surface area
of a cylinder with 6 cm radius and 12 cm height?
Options: (A) 2 cm (B) 1,5 cm (C) 1 cm (D) 0,5 cm (E)

4 cm

Correct answer: (A) 2 cm

gemma-2-9B-it answer: (B) 1,5 cm

Logic & Reasoning

Italian
I partecipanti a una gara di corsa sono 150, di cui 98
maschi, 120 biondi e 90 destrorsi. Qual è il numero minimo
di maschi, biondi e destrorsi che partecipano alla gara?
English
There are 150 participants in a running race: 98 are
male, 120 are blond, and 90 are right-handed. What is
the minimum possible number of participants who are
simultaneously male, blond, and right-handed?
Options: (A) 8 (B) 10 (C) 20 (D) 12 (E) 18

Correct answer: (A) 8

gemma-2-9B-it answer: (B) 10

These snapshots show two common failure modes: a

numerical miscalculation in the geometry element and

an overestimation in the logical minimization problem,

both of which may be influenced by the model’s observed

positional bias towards option (B) (as shown in Figure 3).



Table 3
System prompts used in the study.

Italian (original) English (translation)

P1. Domanda con 5 risposte (0-4). Scrivi solo il numero della
risposta corretta. Nessun altro output.

P1. Question with 5 answers (0-4). Write only the number of the
correct answer. No other output.

P2. Simula il comportamento di un candidato che ha studiato in-
tensamente per il test di Medicina in Italia. Per ciascuna domanda
a risposta multipla con opzioni da 0 a 4, indica solo il numero della
risposta che ritieni corretta. Non fornire alcuna motivazione. Con-
centrati sull’efficienza e sulla precisione.

P2. Simulate the behaviour of a candidate who has studied ex-
tensively for the Italian Medical School admission test. For each
multiple-choice question with options 0-4, output only the number
of the option you believe is correct. Provide no justification. Focus
on efficiency and accuracy.

P3. Sei uno studente italiano con solide competenze in Logica e
Ragionamento, Biologia, Chimica, Matematica, Fisica e Cultura
Generale. Stai sostenendo il test di ingresso alla facoltà di Medic-
ina. Ti verrà fornita una domanda a risposta multipla seguita da
cinque opzioni numerate da 0 a 4. Il tuo compito è indicare esclu-
sivamente il numero (0-4) corrispondente all’alternativa corretta.
Non fornire spiegazioni.

P3. You are an Italian student with strong skills in Logic and
Reasoning, Biology, Chemistry, Mathematics, Physics, and General
Culture. You are taking the entrance exam for the Faculty of
Medicine. You will be given a multiple-choice question followed
by five options numbered 0 to 4. Your task is to output only the
number (0-4) corresponding to the correct option. Do not provide
any explanation.

(a) Biology (b) Chemistry (c) General Knowledge

(d) Mathematics & Physics (e) Logic & Reasoning

Figure 5: Pairwise answer-overlap heat-maps for the five exam domains. Each cell reports the percentage of identical
predictions between two models when evaluated only on the subset of questions belonging to the indicated topic (Prompt 3
setting).

C. Heat-maps of Model Agreement
Figure 5 shows per-domain heatmaps of model agree-

ment. Each cell reports the percentage of identical pre-

dictions on a given topic. The same trends seen in Fig-

ure 4 persist: (i) Minerva checkpoints are tightly aligned,

mostly on wrong answers; (ii) Gemma-2 9B models re-

main the most consistent and accurate pair; (iii) unrelated

models rarely exceed 40% overlap. Still, domain-specific

traits emerge: Logic & Reasoning shows high Minerva

coherence (≥ 70%), suggesting shared shortcuts; Math

& Physics shows the lowest cross-family overlap, likely

due to numerical complexity. These results confirm that

agreement varies by domain and should be interpreted

accordingly.
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