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Abstract

Although reasoning is, by nature, language-agnostic, the extent to which large language models (LLMs) can perform consistent

multilingual reasoning remains limited. Their capacity to deliver step-wise explanations is largely constrained to the dominant

languages present in their pre-training data, thereby limiting cross-lingual generalisation and hindering broader global

applicability. While recent work has explored a range of strategies to extend reasoning capabilities beyond English, these

efforts typically remain grounded in surface-level spoken language phenomena, which may not be optimal for abstract or

formal reasoning tasks. In this study, we focus on Italian and English, two languages with markedly different syntactic and

morphological properties, to assess whether advancements in multilingual reasoning remain consistent and transferable

across typologically diverse settings. To this end, we introduce a modular framework that guides LLMs to abstract the

reasoning process into a structured problem space before generating step-wise reasoning trajectories. The approach leverages

self-training to enhance alignment and generalisation. Experimental results demonstrate stable and significant gains in

multilingual reasoning across models and tasks, with improved consistency between English and Italian.

Keywords

Multilingual Reasoning, Self-training, Large Reasoning Models

1. Introduction

In the era of large language models (LLMs), approaches

such as Chain-of-Thought (CoT) and related methods

seek to emulate human reasoning through language gen-

eration—an ability that, in principle, ought not to be con-

strained by the particularities of any spoken language.

Yet, a growing body of evidence indicates that the rea-

soning capabilities of LLMs vary significantly across lan-

guages, largely as a consequence of imbalances in pre-

training data. LLMs perform better in dominant lan-

guages, notably English, while exhibiting reduced rea-

soning competence in less-represented languages.

Research advances in multilingual reasoning are in-

creasingly aimed at closing the performance differences

among languages, enhancing the models’ capabilities

through in-context learning interventions [1, 2, 3], SFT

strategies that differ from language-specific augmenta-

tion [4, 5] to task-oriented tuning [6], and preference

optimisation [7, 8]. Although these approaches have en-

abled the development of effective methods for transfer-

ring and aligning multilingual reasoning capabilities, we

argue that several critical challenges continue to hinder

progress. First and foremost, the benefits of in-context

interventions appear to be confined to large-scale LLMs,

which are better equipped to interpret and follow instruc-
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tions in a systematic way. However, they must also have

robust multilingual proficiency. Therefore, many works

rely on SFT techniques that maintain reduced costs when

used with specialised, smaller-scale LLMs. Secondly, they

require vast amounts of complex reasoning annotations

and tremendous tuning efforts to get multilingual LLMs

capable of delivering reasoning through SFT and prefer-

ence optimisation techniques.

To enhance multilingual reasoning in LLMs, we pro-

pose a modular approach that first instructs the model to

abstractly formalise the problem and then generate struc-

tured, step-by-step reasoning trajectories that converge

towards a consistent reasoning process across languages.

Our approach decomposes problem solutions into a

sequence of formal, language-agnostic sub-problems

that are solved sequentially and can be more effectively

utilised by models.

The decomposition consists of two high-level mod-

ules: Formalisation and Reasoning Execution. As illus-

trated in Figure 1, we guide the models to: (i) identify

the relevant information within the problem, formalis-

ing variables and predicates while delivering symbolic

transformations; (ii) generate a reasoning execution tra-

jectory in which the transformations are applied using

symbolic representations that explicitly articulate the so-

lution, ultimately yielding an answer in the same query

language.

Previous works proposed English-based strategies that

operate via logical formalisms coupled with external sym-

bolic solvers [9, 10]. Yet, fully symbolic approaches face

a key bottleneck: they require a complete translation
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LLM
(SFT)

 <formalisation> 

S = 200
R = 50
C = 29
D = ?
B = ?
B = 2C- 2
R + C + D + B = S
50 + 29 + D + B = 200

</formalisation>                                                               
<reasoning> 

1. Calcoliamo B: B = 2(29) - 2 = 58 - 2 = 56 
2. Sostituiamo  B = 56 nell’equazione totale: 

50 + 29 + D + 56 = 200  
3.  135 + D = 200  
4.  D = 200 - 135 = 65  

 </reasoning>

<answer> La risposta è 65. </answer>

Policy 
Model

GRPO

“A group of 200 students has 
various hobbies. 50 like to 
read, 29 like to play cricket, 
and the rest like to either 
dance or bake. How many 
like to dance if the number 
that like to bake is 2 less than 
twice the number that prefer 
playing cricket?”

Un gruppo di 200 studenti 
ha una varietà di hobby. 50 
amano leggere, 29 
preferiscono giocare a 
cricket e il resto ama 
ballare o cucinare. Quanti 
studenti preferiscono 
ballare se il numero di 
quelli che preferiscono 
cucinare è 2 meno del 
doppio di quelli che 
preferiscono giocare a 
cricket?

SAGE Annotation

 <formalisation> 

S = 200
R = 50
C = 29
D = ?
B = ?
B = 2C- 2
R + C + D + B = S
50 + 29 + D + B = 200

</formalisation>                                                               
<reasoning> 

1. Compute B: B = 2(29) - 2 = 58 - 2 = 56 
2. Sobstitute  B = 56 to the total equation: 

50 + 29 + D + 56 = 200  
3.  135 + D = 200  
4.  D = 200 - 135 = 65  

 </reasoning>

<answer> The answer is 65. </answer>

Verification 
Refinement

      Self-Training

data Annotation, Refinement warm-up via SFT Self-improvement via RLLLM

8k

o1 ... o1

Figure 1: LLMs deliver language-agnostic reasoning trajectories across languages by disentangling content from logical

reasoning through structured step-wise passages operating via our Structured Abstractive Generative Explanation.

from natural to formal language, which can hinder both

efficiency and flexibility, introducing additional layers of

complexity.

To achieve a better trade-off, we treat formalisations

in an eclectic manner and propose methods to disentan-

gle content from logical reasoning without introducing

rigorous formalisms.

To this end, following Ranaldi and Pucci [11], we in-

struct larger LLMs to generate synthetic demonstrations

through Structured Abstractive Generative Explanation

(SAGE), which are then used to perform Self-training on

smaller LLMs.

As part of the warm-up phase, we experiment with

multiple alignment strategies, ranging from supervised

fine-tuning (Instruction-Tuning) to preference optimisa-

tion techniques (Reinforcement Learning).

We conducted an extensive empirical evaluation to as-

sess the impact of different tuning and alignment strate-

gies.

In multilingual reasoning tasks, our demonstrated sig-

nificant improvements, resulting in an overall increase

in exact matching in proposed tasks, which led to the

following results and conclusions:

• Structuring multilingual reasoning in LLMs as for-

mal reasoning trajectories (SAGE), which lever-

ages language-agnostic reasoning logic, improves

accuracy and generates more verifiable outputs

through a transparent and structured.

• Leveraging self-training heuristics that combine

both tuning and preference optimisation leads to

more robust, generalisable, and language-aligned

models. While tuning based on synthetic demon-

strations proves effective, it alone fails to yield

consistently strong performance across all lan-

guages. Conversely, relying solely on preference

optimisation can provide performance gains, but

at the cost of significant computational overhead.

• Our approach allows the disentanglement of con-

tent from logical reasoning, improving multilin-

gual reasoning in LLMs, thus benefiting in differ-

ent language spaces.

2. Method

We propose a self-training framework that augments

standard fine-tuning with a set of preference optimisa-

tion policies (§ 2.1) designed to improve self-refinment.

The approach iteratively alternates between preference-

based optimisation (via reinforcement learning) and su-

pervised fine-tuning, directing the model to abstract the

underlying problem and articulate a step-wise, formal

solution (§ 2.2). The iterative process terminates once

the model’s performance either converges or reaches a

predefined maximum number of iterations.

2.1. Preference Estimation

RL strategies operate preference estimation. This gener-

ally involves aligning the policy model with preferences

using a reward model, which learns to predict preferences

based on comparisons and leads the optimisation process.

Although this approach is practical, it has problems with

generalisation, scalability, robustness, and alignment. In

GRPO, rule-based reward models are used. While DPO

is generally based on a series of naive string-matching

functions with ground truth values, rules are explicitly



defined in GRPO. Accordingly, we define the following

preference policies:

DPO Preference Estimation We adopt a string-

matching function in line with existing approaches for

English [8, 12]. We then refine this procedure by filter-

ing out generations that do not adhere to the expected

structural pattern and well-formed format.

GRPO Preference Estimation Following Ranaldi and

Pucci [11] we define a rule-based metrics that control the

accuracy, the structure and the form of the generations.

2.2. Self-training

Conventional self-training begins by fine-tuning the base

model ℳ𝜃 on the supervised dataset 𝒟SFT, yielding an

updated model ℳ𝜃′. At this stage, we assume that ℳ𝜃′

has acquired the ability to address the target problem.

Specifically, when presented with a question 𝑥, the model

generates a formal reasoning sequence 𝑦 together with

the corresponding answer 𝑎̂.

Self-training We begin by sampling multiple comple-

tions 𝑦 from ℳ𝜃′ in response to a set of questions 𝑥
drawn from the unlabelled pool 𝒰 . We then apply prefer-

ence estimation heuristics to construct preference-based

samples according to different optimisation strategies:

pairwise comparisons for DPO and grouped completions

for GRPO. These generations are compiled into a dataset

𝒟, which is subsequently used to further train the model

using the corresponding objective functions (ℒDPO and

ℒGRPO), resulting in an updated model ℳ𝜃𝑑.

Then we use ℳ𝜃𝑑 to generate a new pseudo-labeled

dataset for the next-round tuning:

𝒮 = (𝑥, 𝑦)|𝑥 ∼ 𝒰 , 𝑦 ∼𝜃 (·|𝑥). (1)

After generation, the dataset 𝒮 is refined by removing

incorrect answers and eliminating duplicates. Conse-

quently, the resulting pseudo-labeled dataset, denoted

as 𝒮𝛼
, is a subset of the original dataset, i.e., 𝒮𝛼 ⊂ 𝒮 .

The final training dataset is constructed by combining

the original labeled dataset ℒ with the newly generated

pseudo-labeled dataset 𝒮𝛼
. During this process, each

new dataset is used to train from the original base model

ℳ𝜃 , rather than continually fine-tuning ℳ𝜃 , to mitigate

the risk of overfitting.

2.3. Single-training

For comparative purposes, we conduct individual train-

ing operating only with SFT, DPO and GRPO.

Algorithm 1 Self-training [11]

Input: pre-trained language modelℳ𝜃

Input: labeled dataset ℒ = {(𝑥𝑖, 𝑦𝑖, 𝑎𝑖)}𝑙𝑖=1
Input: unlabeled dataset 𝒰 = {(𝑥𝑖, 𝑎𝑖)}𝑢𝑖=1
Input: mode ∈ {DPO,GRPO}
Output: fine-tuned modelℳ𝜃′

# Warm-up stage

1: Fine-tuneℳ𝜃 on ℒ to getℳ𝜃′

2: repeat

3: if mode = DPO then

Generate DPO dataset 𝒟:

𝒟 = {( 𝑥𝑖, 𝑦𝑖𝑤, 𝑦𝑖𝑙 )}
𝑁
𝑖=1

where 𝑥𝑖 ∼ 𝒰 and 𝑦𝑖𝑤, 𝑦𝑖𝑙 ∼ℳ𝜃′ (·|𝑥𝑖)
Tuneℳ𝜃′ with ℒDPO on 𝒟 to getℳ𝜃𝑑

4: end if

5: if mode = GRPO then

Generate GRPO dataset 𝒢:

𝒢 = {(𝑥𝑖, 𝐺𝑖)}𝑁𝑖=1
where 𝑥𝑖 ∼ 𝒰
and 𝐺𝑖 = {𝑦1, . . . , 𝑦𝑘} ∼ ℳ𝜃′ (·|𝑥𝑖)
Compute relative preferences within each group 𝐺𝑖

,

assign pairwise relative scores to outputs in 𝐺𝑖
.

Tuneℳ𝜃′ with ℒGRPO on 𝒢 to getℳ𝜃𝑔

6: end if

# SFT step

Build pseudo-labeled dataset 𝒮 :

𝒮 = {(𝑥𝑖, 𝑦𝑖, 𝑎̂𝑖)}𝑠𝑖=1
where 𝑥𝑖 ∼ 𝒰 and 𝑦𝑖, 𝑎̂𝑖 ∼ℳ𝜃𝑑 (·|𝑥𝑖)
ℳ𝜃𝑔 (·|𝑥𝑖)

Select 𝒮𝛼 ⊂ 𝒮 when 𝑎̂𝑖 = 𝑎𝑖

Update ℒ ← 𝒮𝛼 ∪ ℒ
7: Trainℳ𝜃 on ℒ to get a newℳ𝜃′

8: until convergence or max iteration is reached

3. Experiments

As outlined in the introduction, our objective is to de-

velop a method for enhancing the reasoning capabili-

ties of LLMs beyond English, with a particular emphasis

on Italian. Our experiments are conducted on multilin-

gual reasoning tasks. We evaluate four models (§ 3.1),

trained according to the procedure detailed in § 3.2, on

two mathematical reasoning benchmarks (§ 3.3), using

the experimental configurations described in § 3.4.

3.1. Models

To conduct our study on different models and have a term

of comparison, we use Llama3-8B [13], DeepSeekMath-

7B-Instruct [14] (DeepSeek-7B). Furthermore, to show

the scalability and effectiveness of our approach on fur-

ther models, we introduce additional smaller-scale mod-

els: EuroLLM-1.7B and Velvet-2B.



3.2. Training Methods

As introduced in §2, we use a iterative steps of SFT and

RL. We follow standard practice and perform a warm-

up phase based on an SFT step using synthetic demon-

strations discussed in §3.3.2. Then, we conduct the self-

training by progressively applying SFT and RL optimisa-

tion algorithms. Following pilot studies (later discussed),

we set the total number of iterations to three (excluding

warm-up), the same for the settings where we use only

one between SFT and RL.

Preference Optimisation RL We employ the Hug-

gingFace trainers (𝐷𝑃𝑂𝑡𝑟𝑎𝑖𝑛𝑒𝑟 and 𝐺𝑅𝑃𝑂𝑡𝑟𝑎𝑖𝑛𝑒𝑟) to

ensure reproducibility. For DPO, we set the learning rate

to 1e-6 and 𝛽 to 0.1. The optimisation process is set at

a maximum of 2000 steps, saving the checkpoint corre-

sponding to the lowest validation loss. For GRPO, we set

the learning rate to 5e-6 and 𝛽 to 𝑥. The optimisation

process is set at a maximum of 2000 steps, saving the

checkpoint corresponding to the lowest validation loss.

Details in Appendix D.

Supervised Fine-tuning Regarding the SFT phase,

we employed 8-bit quantization and LoRA. We tune the

model for one epoch (warm-up) and for one epoch for

each iteration using the learning rates according to the

specific model configuration, as detailed in Appendix D.

3.3. Data

3.3.1. Evaluation Set

To study the reasoning performances of trained models,

we operate via mGSM, mSVAMP, and we introduce mGSM-

Symbolic focusing on English and Italian.

Mathematical Reasoning task We use the extension

of GSM8K and SVAMP. Respectively, Multilingual Grade

School Math (mGSM) and Multilingual Simple Variations

on Arithmetic Math word Problems (mSVAMP). In origi-

nal cases, the authors proposed a benchmark of English

mathematical problems with the following structure: a

word problem in natural language and a target answer in

numbers. For both versions, a subset of instances from

the official list of examples were translated into 11 dif-

ferent languages, maintaining the structure of the input

and output.

mGSM-Symbolic Mirzadeh et al. [15] improved

GSM8k (the ancestor of MGSM) by proposing GSM-

Symbolic. This introduces symbolic patterns in GSM8k

that complexify the task and disadvantage the LLMs’ ca-

pabilities. We propose mGSM-Symbolic, the multilingual

GSM-Symbolic extension. In particular, we conduct an

automatic translation phase disillusioned by qualified

annotators in 10 different languages. The dataset is avail-

able on GitHub
1

and HuggingFace
2

.

3.3.2. Training Set

Instead of using natural language rationale, we employ

synthetic demonstrations to train models to solve tasks

following the two phases in Figure 1. Specifically, we

instruct a robust model capable of addressing multilin-

gual mathematical tasks by formalising problems and

solving them in a language-agnostic manner. We em-

ploy GPT-4o as annotator, instructing it with the prompt

detailed in Appendix A (we define this procedure as

Self-training)

Different works train an expert version of the same

model that is going to be refined for generating syn-

thetic demonstrations, which are subsequently used

for self-training (we define this procedure as Full
Self-training).

Multilingual Demonstrations We annotate a subset

of the mSVAMP dataset containing 250 samples for all

languages to have in-domain demonstrations. After the

annotation process, we check the quality of the demon-

strations using rule-based heuristics and GPT-4o-mini as

an additional evaluator (details in Appendix C).

3.4. Experimental Setup

In-context Learning We evaluate the baseline mod-

els (without tuning) using a 6-shot strategy defined as

Direct and CoT. Moreover, we instruct the models to

solve the problem following SAGE.

Training We assess the impact of the Self-training ap-

proaches (§3) by conducting different tuning configura-

tions:

• SFT, RLWe tune the models using the synthetic demon-

strations as detailed in Appendix B.

• Self-training We warm-up the models using the syn-

thetic demonstrations as detailed and conduct the self-

training strategies using both policies.

• Full Self-training Finally, to observe the impact of

the self-generated demonstrations, we conduct both the

annotation, SFT (warm-up) and Full Self-train phase

completely on the self-generated data of the same expert

model.

1 lranaldii/MGSM-Symbolic

2 lrana/MGSM-Symbolic

https://github.com/lranaldii/MGSM-Symbolic
https://huggingface.co/datasets/lrana/MGSM-Symbolic


4. Results

Reasoning can be effectively grounded in language-

agnostic form, which LLMs can leverage to enhance

multilingual task performance. SAGE facilitates this by

guiding LLMs towards structured symbolic solutions, en-

abling them to produce robust and consistent outputs

across languages. While SAGE yields strong results in

GPT-4o, its benefits do not readily extend to smaller mod-

els. To address this, we adopt a self-training strategy

that enables smaller models to acquire formal reasoning

capabilities independently of explicit instruction, ulti-

mately achieving greater consistency than GPT-4o (§ 4.1).

Notably, self-training not only outperforms standalone

SFT and reinforcement learning approaches, but also

enables models to achieve stronger performance with

substantially less training data (§ 4.2). Furthermore, we

demonstrate the scalability of this method by successfully

applying self-training to additional small-scale models

(§ 4.3).

4.1. Language-Agnostic Reasoning

SAGE positively influences the models’ performance in

multilingual reasoning, getting substantial benefits on

the proposed tasks.

Models En It

GPT-4o 83.2 79.0

+SAGE 93.0 88.6

Llama3-8B 76.0 58.2

+Self-training 91.8 73.0

DeepSeek-7B 76.2 58.2

+Self-training 90.2 76.9

Velvet-2B 60.2 56.8

+Self-training 71.0 68.5

EuroLLM-1.7B 66.3 60.4

+Self-training 72.6 65.8

Table 1

Performances on mGSM-Symbolic.

Multilingual Reasoning Table 1 presents results for

SAGE with GPT-4o on mGSM-Symbolic, with a partic-

ular focus on English and Italian. The performance re-

mains consistent with that observed in mGSM, as indi-

cated by the values in brackets. Notably, the Self-training

strategy enhances the models’ abstraction capabilities,

allowing them to perform well even in the more formal

and structured setting of mGSM-Symbolic, where typ-

ical linguistic biases are reduced. In contrast, baseline

methods yield substantially lower scores, underscoring

the effectiveness of SAGE’s formalisation in supporting

multilingual reasoning.

In-context Learning Table 2 presents the perfor-

mance of SAGE applied to GPT-4o, showing clear im-

provements over previous prompting-based strategies

such as Direct and CoT. The use of in-context instruc-

tions encourages the model to organise problem-solving

in a structured manner, promoting step-wise reasoning

and planning. This results in more consistent reasoning

trajectories that are less influenced by language-specific

patterns, thereby reducing performance disparities across

languages.

4.2. The Self-training Impact

Table 2 summarises the outcomes of applying the Self-

training strategy across multiple models. The findings

indicate a consistent enhancement in performance, par-

ticularly in terms of cross-linguistic consistency, even if

overall accuracy remains below that of GPT-4o. Beyond

accuracy, Self-training proves to be a more efficient tun-

ing method, yielding stronger models while requiring sig-

nificantly less training data than alternative approaches

such as SFT and RL. This advantage is reflected in the

steady performance gains observed over SFT in Table 2,

and further supported by data efficiency metrics reported

in Appendix F, where Self-training operates with fewer

examples per model.

The role of RL Table 2 reports the results obtained

using GRPO. As shown in Table 3, GRPO consistently

outperforms DPO, both when applied in isolation and

when integrated with SFT within the full Self-training

framework. As outlined in Section 2.1, GRPO does not

rely on an annotated dataset for supervision. Instead,

similar to prior work, a rule-based algorithm serves as

a proxy reward model. Unlike DPO, which operates at

the level of individual instances, GRPO is specifically

designed to optimise groups of completions across lan-

guages, making it well-suited to the multilingual nature

of the proposed task.

The impact of Full Self-training Current alignment

strategies typically rely on demonstrations produced

by expert models belonging to the same model family.

Ranaldi and Freitas [6] demonstrate that in-family learn-

ing exerts a stronger influence on the performance of stu-

dent models. In our work, we adopt the Full Self-training

approach and show that self-generated demonstrations

can lead to more robust outcomes than those derived

from GPT-4o. As illustrated in Figure 2, models trained

with their own annotations exhibit greater consistency



Model Method

mGSM mSVAMP Average

En It En It En It

GPT-4o

Direct 86.8 79.8 83.2 74.6 85.0 77.2

CoT 92.4 86.0 89.0 78.2 90.7 82.1

SAGE 93.0 88.4 86.2 83.6 89.6 86.0

Llama-3-8B

Direct 79.6 61.2 81.2 69.8 80.4 65.5

RL (GRPO) 84.0 70.4 83.6 70.0 83.8 70.2

SFT 82.6 68.0 83.0 72.6 82.8 70.3

Self-training 92.0 84.6 88.4 71.8 90.2 78.2

DeepSeek-7B

Direct 78.0 66.2 83.0 77.4 80.5 71.7

RL (GRPO) 84.8 72.2 84.4 80.0 86.4 70.6

SFT 82.0 70.0 80.6 80.4 81.3 75.2

Self-training 86.0 76.8 90.4 86.0 88.2 81.8

Velvet-2B

Direct 58.0 55.4 60.6 55.0 59.3 55.2

RL (GRPO) 66.8 62.2 62.4 56.8 64.6 59.5

SFT 64.4 60.0 62.0 58.0 63.2 59.0

Self-training 70.4 72.0 70.8 62.4 70.6 66.3

EuroLLM-1.7B

Direct 62.0 59.0 62.0 59.4 62.0 59.2

RL (GRPO) 66.0 64.0 64.6 60.8 65.3 62.4

SFT 64.4 60.2 69.0 62.0 66.7 61.1

Self-training 72.0 71.2 68.4 64.8 70.2 68.0

Table 2

Accuracy scores using methods introduced in §2. We report the models trained via GRPO algorithm.
*

(in bold the best

performance per model.

mGSM mSVAMP

Llama-3-8B
RL +3.8 +3.2

SFT+RL +8.4 +3.6

DeepSeek-7B
RL +5.2 +4.0

SFT+RL +8.6 +5.8

Velvet-2B
RL +2.0 +2.6

SFT+RL +1.6 +1.8

EuroLLM-1.7B
RL +2.2 +2.8

SFT+RL +2.4 +3.0

Table 3

Differences (Δ) between GRPO and DPO when used alone

(RL) and in Self-training settings (SFT+RL). Bold indicates the

highest observed gains.

and resilience across languages, despite using the same

amount of training data.

4.3. Transferability in Smaller Models

To evaluate the transferability of Self-training and SAGE

to smaller-scale models, we extend our experiments

to include Llama-3-1B, EuroLLM-1.7B, and Velvet-2B.

These models were selected based on three criteria: their

inherent multilingual design, their promising perfor-

mance in mathematical reasoning tasks, and their rel-

atively low parameter count, which enabled efficient ex-

Figure 2: Accuracy differences using data generated by GPT-

4o and self-generated (i.e. Full Self-training).

perimentation across training regimes.

We adopt the experimental setup detailed in § 3.1, ap-

plying SFT, GRPO, and our full Self-training procedure.

Table 3 reports the average results obtained on the mGSM-

Symbolic benchmark. Across all models, Self-training

with SAGE consistently outperforms both SFT and RL-

based baselines.



Figure 3: Average accuracies of smaller models in our mGSM-

Symbolic.

5. Background

5.1. Improving Reasoning in LLMs

Improving reasoning capabilities in LLMs (both En-

glish and multi- and cross-lingual) is usually con-

ducted through SFT using ground-thought examples and

preference-based approaches.

Supervised Fine-Tuning Supervised Fine-Tuning

(SFT) is a standard approach for adapting a model ℳ to

reasoning tasks using a labelled dataset ℒ. Each instance

in ℒ consists of a question 𝑥, a corresponding step-by-

step explanation 𝑦, and a final answer 𝑎. The answer is

derived from the explanation using regular expressions.

A generated rationale 𝑦 is deemed valid if the extracted

answer 𝑎̂ matches the reference answer 𝑎. Formally, the

labelled dataset with 𝑛 instances is defined as:

ℒ = (𝑥𝑖, 𝑦𝑖, 𝑎𝑖)𝑖 = 1𝑛. (2)

SFT updates the parameters 𝜃 of model ℳ𝜃 by minimis-

ing the negative log-likelihood of the target rationale:

ℒSFT(𝜃) = E(𝑥, 𝑦) ∼ ℒ

[︃
𝑇∑︁

𝑡=1

log 𝑓𝜃(𝑦𝑡|𝑥, 𝑦1:𝑡−1)

]︃
,

(3)

where 𝑇 is the length of the rationale 𝑦, and 𝑦𝑡 denotes

its 𝑡-th token.

Self-training Self-training refers to a family of SFT-

based methods that have recently gained renewed inter-

est for their effectiveness in enhancing reasoning capa-

bilities [16]. These methods typically follow a two-stage

process. First, a base model ℳ𝜃 is fine-tuned on a la-

belled subset ℒ to obtain a teacher model ℳ𝜃′. This

teacher is then used to annotate an unlabelled dataset

𝒰 , producing a pseudo-labelled dataset ℒ̂. In the second

stage, a student model ℳ𝜃 is trained on the combina-

tion of the original data ℒ and the pseudo-labelled data

ℒ̂, with the aim of surpassing the performance of the

teacher ℳ𝜃′.

Empirical studies have shown that the quality of

pseudo-labels plays a critical role in determining the effec-

tiveness of self-training. To address this, Wang et al. [12]

propose an iterative refinement procedure, wherein the

model ℳ𝜃 is progressively improved, ensuring increas-

ingly accurate pseudo-labelled data across iterations.

Reinforcement Learning Heuristics (RL) Within

the Self-training approaches, Reinforcement Learning

from Human Feedback (RLHF) is widely used for aligning

language models with human feedback [17]. The RLHF

framework refines LLM behaviour by leveraging human

preference data to guide model tuning through RL. Specif-

ically, it uses a reward model 𝑟(𝑥, 𝑦), which captures hu-

man preferences given an input 𝑥 and its corresponding

output 𝑦. This reward model is then employed to assign

preference scores to arbitrary LLM-generated outputs,

facilitating iterative policy refinements via proximal pol-

icy optimisation (PPO) [18]. The training process follows

an optimisation function, for instance, PPO, which opti-

mises the model policy 𝜑𝜃 to maximise expected rewards

while minimising divergence from the SFT policy:

E(𝑥,𝑦)∼𝐷𝜋 [𝑟(𝑥, 𝑦)− 𝛾 log
𝜑𝜃(𝑦|𝑥)
𝜑SFT(𝑦|𝑥)

], (4)

where 𝜑SFT denotes the original model trained via SFT,

and 𝛾 serves as a regularization hyperparameter to con-

strain policy updates.

Direct Preference Optimisation Reinforcement

Learning with Human Feedback (RLHF), particularly

through Proximal Policy Optimisation (PPO), has proven

effective for aligning language models with human pref-

erences. However, it typically requires multiple auxiliary

components, including a reward model, making the train-

ing process computationally intensive and technically

complex. To address this, Rafailov et al. [19] proposed Di-

rect Preference Optimisation (DPO), which allows models

to be aligned directly with human preferences without

the need to train a separate reward model.

DPO begins with a warm-up phase based on super-

vised fine-tuning. For a given input 𝑥, the reference

policy 𝜑ref generates two candidate completions:

𝑦1, 𝑦2 ∼ 𝜑ref(· | 𝑥). (5)

These are then paired based on preference to form the

DPO training set:

ℒ𝐷𝑃𝑂 = (𝑥𝑖, 𝑦𝑖
𝑤, 𝑦

𝑖𝑙)𝑖 = 1𝑁 , (6)

where 𝑦𝑖
𝑤 is the preferred response and 𝑦𝑖

𝑙 is the less

preferred one.

The policy model ℳ𝜃 is then optimised by minimising

the following objective:

E (𝑥, 𝑦𝑤, 𝑦𝑙) ∼ 𝒟 [− log 𝜎 (𝑟(𝑦𝑤|𝑥)− 𝑟(𝑦𝑙|𝑥))] , (7)



where the score function is defined as 𝑟(·|𝑥) =

𝛽 log 𝜑𝜃(·|𝑥)
𝜑

ref
(·|𝑥) , and the parameter 𝛽 regulates how far

the new policy 𝜑𝜃 may deviate from the reference policy.

While DPO offers a more streamlined alternative to

RLHF by avoiding explicit reward modelling, it is limited

by its reliance on fixed pairwise preference comparisons.

This can hinder its capacity to generalise across tasks

that exhibit contextual or structural variation [20].

Group Relative Policy Optimisation To overcome

these limitations, Shao et al. [21] introduced Group Rel-

ative Policy Optimisation (GRPO), a refinement of PPO

that improves training stability by using group-based

reward estimation. Instead of relying on pairwise com-

parisons, GRPO evaluates completions within groups and

assigns rewards based on relative performance within

those groups.

Given a batch of responses from the policy model 𝜑𝜃 ,

GRPO estimates relative advantages across the group and

applies the following optimisation objective:

E(𝑥, 𝑦) ∼ 𝐷 [𝐴rel(𝑦|𝑥) log 𝜋𝜃(𝑦|𝑥)− 𝛽𝐷KL (𝜋𝜃|𝜋ref)] ,
(8)

where 𝜋𝜃 is the updated policy and 𝜋ref is the original

pre-trained policy. The KL divergence term prevents the

updated policy from diverging excessively from its prior,

with the coefficient 𝛽 determining the strength of this

regularisation.

The relative advantage 𝐴rel(𝑦|𝑥) is computed as:

𝐴rel(𝑦|𝑥) =
𝑟(𝑦|𝑥)− 𝜇

𝜎
, (9)

where 𝑟(𝑦|𝑥) denotes the reward assigned to the re-

sponse 𝑦, and 𝜇 and 𝜎 are the mean and standard de-

viation of the reward distribution within the group.

GRPO has demonstrated particular efficacy in multi-

task and multilingual reasoning contexts. By comparing

responses within structurally related groups, it allows

for more adaptive and robust policy updates, supporting

better generalisation and stability across tasks. Empir-

ical findings confirm that GRPO improves consistency,

robustness, and data efficiency when compared to tradi-

tional PPO-based methods.

5.2. Multilingual Reasoning

Recent efforts to assess the capabilities of LLMs have fo-

cused on their performance in complex reasoning tasks,

particularly in mathematical problem-solving. Bench-

mark datasets such as GSM8K and SVAMP have been

widely adopted for this purpose. To extend such evalua-

tion to multilingual contexts, Shi et al. [22] introduced

mGSM, a multilingual variant of GSM8K, created by man-

ually translating 250 test samples into various languages.

Chen et al. [23] proposed mSVAMP, a multilingual exten-

sion of SVAMP following the same approach. Multiple

strategies have been proposed to enhance multilingual

reasoning in LLMs. These include translation-based ap-

proaches [24], SFT [25], and preference-based alignment

methods [7], each of which demonstrates gains in mul-

tilingual performance. Nonetheless, these methods rely

heavily on high-quality annotated data. SFT suffers from

forgetting and poor generalisation, while preference-

based alignment adds computational overhead through

critic-based systems. Another line of research has ex-

plored the use of in-context prompting, whereby LLMs

are instructed to reason step by step through carefully

designed prompts. Although this strategy has proven

useful in certain tasks [2], its reliance on English, com-

bined with its inefficacy for smaller models [1], limits its

applicability. Moreover, reasoning under this framework

is typically induced by the prompt’s structure, making it

difficult to generalise across languages or domains.

While reasoning is inherently independent of language,

the extent to which LLMs demonstrate consistent rea-

soning across linguistic boundaries remains limited. We

aim to disentangle logical reasoning from linguistic sur-

face forms by adopting a language-agnostic formalism.

We propose converting problems expressed in any lan-

guage into a shared formal representation that is abstract,

manipulable, and semantically grounded. Reasoning op-

erates over this intermediate form, with the final answer

rendered in the target language. To support this, we

instruct LLMs to abstract and solve problems via self-

training, enabling scalable multilingual reasoning with-

out the need for prompt engineering.

6. Conclusion & Future Works

Although reasoning is inherently language-agnostic,

LLMs’ outputs often reflect biases towards dominant pre-

training languages, particularly English. While models

show strong multilingual capabilities, their step-wise rea-

soning remains inconsistent across languages. Focusing

on English and Italian, we propose a modular approach

that abstracts the problem into a language-agnostic for-

malism, followed by structured reasoning. Using self-

training, we align reasoning performances, achieving

gains in both accuracy and consistency.

This work contributes to a series of studies aimed

at expanding the proficiency of LLMs beyond English.

In our Research, we have explored interventions at ev-

ery stage—from pre-training [26, 27] and post-training

[4, 11] to inference methods [1, 2, 3], and recently on

multimodal reasoning [28]. In parallel, the aim is to

propose methodologies based on human-inspired princi-

ples [29, 30, 31, 32] that aim to steer models away from

heuristics that lead to verbatim-based [33] or symbolic-



semantic memorisation [34]. Our overarching goal is to

ensure that Italian is not left behind, applying state-of-

the-art approaches to enhance generative capabilities,

linguistic proficiency, and other emerging competencies

of contemporary LLMs in Italian.

References

[1] L. Ranaldi, G. Pucci, F. Ranaldi, E. S. Ruzzetti,

F. M. Zanzotto, A tree-of-thoughts to broaden

multi-step reasoning across languages, in: K. Duh,

H. Gomez, S. Bethard (Eds.), Findings of the Associ-

ation for Computational Linguistics: NAACL 2024,

Association for Computational Linguistics, Mex-

ico City, Mexico, 2024, pp. 1229–1241. URL: https:

//aclanthology.org/2024.findings-naacl.78. doi:10.
18653/v1/2024.findings-naacl.78.

[2] L. Ranaldi, G. Pucci, B. Haddow, A. Birch, Em-

powering multi-step reasoning across languages

via program-aided language models, in: Y. Al-

Onaizan, M. Bansal, Y.-N. Chen (Eds.), Proceed-

ings of the 2024 Conference on Empirical Methods

in Natural Language Processing, Association for

Computational Linguistics, Miami, Florida, USA,

2024, pp. 12171–12187. URL: https://aclanthology.

org/2024.emnlp-main.678. doi:10.18653/v1/2024.
emnlp-main.678.

[3] L. Ranaldi, B. Haddow, A. Birch, When natural

language is not enough: The limits of in-context

learning demonstrations in multilingual reason-

ing, in: L. Chiruzzo, A. Ritter, L. Wang (Eds.),

Findings of the Association for Computational Lin-

guistics: NAACL 2025, Association for Compu-

tational Linguistics, Albuquerque, New Mexico,

2025, pp. 7369–7396. URL: https://aclanthology.org/

2025.findings-naacl.412/. doi:10.18653/v1/2025.
findings-naacl.412.

[4] L. Ranaldi, G. Pucci, Does the English matter? elicit

cross-lingual abilities of large language models, in:

D. Ataman (Ed.), Proceedings of the 3rd Workshop

on Multi-lingual Representation Learning (MRL),

Association for Computational Linguistics, Singa-

pore, 2023, pp. 173–183. URL: https://aclanthology.

org/2023.mrl-1.14. doi:10.18653/v1/2023.mrl-1.
14.

[5] L. Ranaldi, G. Pucci, A. Freitas, Does the Order
matter? Curriculum learning over languages, in:

N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti,

N. Xue (Eds.), Proceedings of the 2024 Joint In-

ternational Conference on Computational Linguis-

tics, Language Resources and Evaluation (LREC-

COLING 2024), ELRA and ICCL, Torino, Italia, 2024,

pp. 5212–5220. URL: https://aclanthology.org/2024.

lrec-main.464/.

[6] L. Ranaldi, A. Freitas, Aligning large and small

language models via chain-of-thought reasoning,

in: Y. Graham, M. Purver (Eds.), Proceedings of the

18th Conference of the European Chapter of the

Association for Computational Linguistics (Volume

1: Long Papers), Association for Computational

Linguistics, St. Julian’s, Malta, 2024, pp. 1812–1827.

URL: https://aclanthology.org/2024.eacl-long.109/.

[7] J. Dang, A. Ahmadian, K. Marchisio, J. Kreutzer,

A. Üstün, S. Hooker, RLHF can speak many lan-

guages: Unlocking multilingual preference opti-

mization for LLMs, in: Y. Al-Onaizan, M. Bansal,

Y.-N. Chen (Eds.), Proceedings of the 2024 Confer-

ence on Empirical Methods in Natural Language

Processing, Association for Computational Linguis-

tics, Miami, Florida, USA, 2024, pp. 13134–13156.

URL: https://aclanthology.org/2024.emnlp-main.

729/. doi:10.18653/v1/2024.emnlp-main.729.

[8] L. Ranaldi, A. Freitas, Self-refine instruction-

tuning for aligning reasoning in language mod-

els, in: Y. Al-Onaizan, M. Bansal, Y.-N. Chen

(Eds.), Proceedings of the 2024 Conference on Em-

pirical Methods in Natural Language Processing,

Association for Computational Linguistics, Miami,

Florida, USA, 2024, pp. 2325–2347. URL: https:

//aclanthology.org/2024.emnlp-main.139/. doi:10.
18653/v1/2024.emnlp-main.139.

[9] V. Gaur, N. Saunshi, Reasoning in large lan-

guage models through symbolic math word prob-

lems, in: Findings of the Association for Com-

putational Linguistics: ACL 2023, Association

for Computational Linguistics, Toronto, Canada,

2023, pp. 5889–5903. URL: https://aclanthology.

org/2023.findings-acl.364. doi:10.18653/v1/2023.
findings-acl.364.

[10] L. Pan, A. Albalak, X. Wang, W. Wang, Logic-

LM: Empowering large language models with sym-

bolic solvers for faithful logical reasoning, in:

H. Bouamor, J. Pino, K. Bali (Eds.), Findings of the

Association for Computational Linguistics: EMNLP

2023, Association for Computational Linguistics,

Singapore, 2023, pp. 3806–3824. URL: https://

aclanthology.org/2023.findings-emnlp.248/. doi:10.
18653/v1/2023.findings-emnlp.248.

[11] L. Ranaldi, G. Pucci, Multilingual reasoning via self-

training, in: L. Chiruzzo, A. Ritter, L. Wang (Eds.),

Proceedings of the 2025 Conference of the Nations

of the Americas Chapter of the Association for Com-

putational Linguistics: Human Language Technolo-

gies (Volume 1: Long Papers), Association for Com-

putational Linguistics, Albuquerque, New Mexico,

2025, pp. 11566–11582. URL: https://aclanthology.

org/2025.naacl-long.577/. doi:10.18653/v1/2025.
naacl-long.577.

https://aclanthology.org/2024.findings-naacl.78
https://aclanthology.org/2024.findings-naacl.78
http://dx.doi.org/10.18653/v1/2024.findings-naacl.78
http://dx.doi.org/10.18653/v1/2024.findings-naacl.78
https://aclanthology.org/2024.emnlp-main.678
https://aclanthology.org/2024.emnlp-main.678
http://dx.doi.org/10.18653/v1/2024.emnlp-main.678
http://dx.doi.org/10.18653/v1/2024.emnlp-main.678
https://aclanthology.org/2025.findings-naacl.412/
https://aclanthology.org/2025.findings-naacl.412/
http://dx.doi.org/10.18653/v1/2025.findings-naacl.412
http://dx.doi.org/10.18653/v1/2025.findings-naacl.412
https://aclanthology.org/2023.mrl-1.14
https://aclanthology.org/2023.mrl-1.14
http://dx.doi.org/10.18653/v1/2023.mrl-1.14
http://dx.doi.org/10.18653/v1/2023.mrl-1.14
https://aclanthology.org/2024.lrec-main.464/
https://aclanthology.org/2024.lrec-main.464/
https://aclanthology.org/2024.eacl-long.109/
https://aclanthology.org/2024.emnlp-main.729/
https://aclanthology.org/2024.emnlp-main.729/
http://dx.doi.org/10.18653/v1/2024.emnlp-main.729
https://aclanthology.org/2024.emnlp-main.139/
https://aclanthology.org/2024.emnlp-main.139/
http://dx.doi.org/10.18653/v1/2024.emnlp-main.139
http://dx.doi.org/10.18653/v1/2024.emnlp-main.139
https://aclanthology.org/2023.findings-acl.364
https://aclanthology.org/2023.findings-acl.364
http://dx.doi.org/10.18653/v1/2023.findings-acl.364
http://dx.doi.org/10.18653/v1/2023.findings-acl.364
https://aclanthology.org/2023.findings-emnlp.248/
https://aclanthology.org/2023.findings-emnlp.248/
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.248
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.248
https://aclanthology.org/2025.naacl-long.577/
https://aclanthology.org/2025.naacl-long.577/
http://dx.doi.org/10.18653/v1/2025.naacl-long.577
http://dx.doi.org/10.18653/v1/2025.naacl-long.577


[12] T. Wang, S. Li, W. Lu, Self-training with direct pref-

erence optimization improves chain-of-thought rea-

soning, in: L.-W. Ku, A. Martins, V. Srikumar (Eds.),

Proceedings of the 62nd Annual Meeting of the As-

sociation for Computational Linguistics (Volume 1:

Long Papers), Association for Computational Lin-

guistics, Bangkok, Thailand, 2024, pp. 11917–11928.

URL: https://aclanthology.org/2024.acl-long.643/.

doi:10.18653/v1/2024.acl-long.643.

[13] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey,

A. Kadian, inter alia, The llama 3 herd of mod-

els, 2024. URL: https://arxiv.org/abs/2407.21783.

arXiv:2407.21783.

[14] Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song,

X. Bi, H. Zhang, M. Zhang, Y. K. Li, Y. Wu,

D. Guo, Deepseekmath: Pushing the limits of

mathematical reasoning in open language mod-

els, 2024. URL: https://arxiv.org/abs/2402.03300.

arXiv:2402.03300.

[15] I. Mirzadeh, K. Alizadeh, H. Shahrokhi, O. Tuzel,

S. Bengio, M. Farajtabar, Gsm-symbolic: Under-

standing the limitations of mathematical reason-

ing in large language models, 2024. URL: https:

//arxiv.org/abs/2410.05229. arXiv:2410.05229.

[16] DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song,

R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi,

X. Zhang, X. Yu, Y. Wu, Z. F. Wu, Z. Gou, Z. Shao,

Z. Li, Z. Gao, A. Liu, B. Xue, B. Wang, B. Wu,

B. Feng, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan,

D. Dai, D. Chen, D. Ji, E. Li, F. Lin, F. Dai, F. Luo,

G. Hao, G. Chen, G. Li, H. Zhang, H. Bao, H. Xu,

H. Wang, H. Ding, H. Xin, H. Gao, H. Qu, H. Li,

J. Guo, J. Li, J. Wang, J. Chen, J. Yuan, J. Qiu, J. Li,

J. L. Cai, J. Ni, J. Liang, J. Chen, K. Dong, K. Hu,

K. Gao, K. Guan, K. Huang, K. Yu, L. Wang, L. Zhang,

L. Zhao, L. Wang, L. Zhang, L. Xu, L. Xia, M. Zhang,

M. Zhang, M. Tang, M. Li, M. Wang, M. Li, N. Tian,

P. Huang, P. Zhang, Q. Wang, Q. Chen, Q. Du, R. Ge,

R. Zhang, R. Pan, R. Wang, R. J. Chen, R. L. Jin,

R. Chen, S. Lu, S. Zhou, S. Chen, S. Ye, S. Wang,

S. Yu, S. Zhou, S. Pan, S. S. Li, S. Zhou, S. Wu, S. Ye,

T. Yun, T. Pei, T. Sun, T. Wang, W. Zeng, W. Zhao,

W. Liu, W. Liang, W. Gao, W. Yu, W. Zhang, W. L.

Xiao, W. An, X. Liu, X. Wang, X. Chen, X. Nie,

X. Cheng, X. Liu, X. Xie, X. Liu, X. Yang, X. Li, X. Su,

X. Lin, X. Q. Li, X. Jin, X. Shen, X. Chen, X. Sun,

X. Wang, X. Song, X. Zhou, X. Wang, X. Shan,

Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. Zhang, Y. Xu,

Y. Li, Y. Zhao, Y. Sun, Y. Wang, Y. Yu, Y. Zhang,

Y. Shi, Y. Xiong, Y. He, Y. Piao, Y. Wang, Y. Tan,

Y. Ma, Y. Liu, Y. Guo, Y. Ou, Y. Wang, Y. Gong,

Y. Zou, Y. He, Y. Xiong, Y. Luo, Y. You, Y. Liu,

Y. Zhou, Y. X. Zhu, Y. Xu, Y. Huang, Y. Li, Y. Zheng,

Y. Zhu, Y. Ma, Y. Tang, Y. Zha, Y. Yan, Z. Z. Ren,

Z. Ren, Z. Sha, Z. Fu, Z. Xu, Z. Xie, Z. Zhang,

Z. Hao, Z. Ma, Z. Yan, Z. Wu, Z. Gu, Z. Zhu, Z. Liu,

Z. Li, Z. Xie, Z. Song, Z. Pan, Z. Huang, Z. Xu,

Z. Zhang, Z. Zhang, Deepseek-r1: Incentivizing rea-

soning capability in llms via reinforcement learn-

ing, 2025. URL: https://arxiv.org/abs/2501.12948.

arXiv:2501.12948.

[17] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L.

Wainwright, P. Mishkin, C. Zhang, S. Agarwal,

K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kel-

ton, L. Miller, M. Simens, A. Askell, P. Welinder,

P. Christiano, J. Leike, R. Lowe, Training language

models to follow instructions with human feed-

back, 2022. URL: https://arxiv.org/abs/2203.02155.

arXiv:2203.02155.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,

O. Klimov, Proximal policy optimization algo-

rithms, 2017. URL: https://arxiv.org/abs/1707.06347.

arXiv:1707.06347.

[19] R. Rafailov, A. Sharma, E. Mitchell, S. Ermon,

C. D. Manning, C. Finn, Direct preference opti-

mization: Your language model is secretly a reward

model, 2024. URL: https://arxiv.org/abs/2305.18290.

arXiv:2305.18290.

[20] Y. Lin, S. Seto, M. Ter Hoeve, K. Metcalf, B.-J.

Theobald, X. Wang, Y. Zhang, C. Huang, T. Zhang,

On the limited generalization capability of the

implicit reward model induced by direct prefer-

ence optimization, in: Y. Al-Onaizan, M. Bansal,

Y.-N. Chen (Eds.), Findings of the Association

for Computational Linguistics: EMNLP 2024, As-

sociation for Computational Linguistics, Miami,

Florida, USA, 2024, pp. 16015–16026. URL: https://

aclanthology.org/2024.findings-emnlp.940/. doi:10.
18653/v1/2024.findings-emnlp.940.

[21] Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song,

X. Bi, H. Zhang, M. Zhang, Y. K. Li, Y. Wu,

D. Guo, Deepseekmath: Pushing the limits of

mathematical reasoning in open language mod-

els, 2024. URL: https://arxiv.org/abs/2402.03300.

arXiv:2402.03300.

[22] F. Shi, M. Suzgun, M. Freitag, X. Wang, S. Sri-

vats, S. Vosoughi, H. W. Chung, Y. Tay, S. Ruder,

D. Zhou, D. Das, J. Wei, Language models are

multilingual chain-of-thought reasoners, 2022.

arXiv:2210.03057.

[23] N. Chen, Z. Zheng, N. Wu, M. Gong, Y. Song,

D. Zhang, J. Li, Breaking language barriers in mul-

tilingual mathematical reasoning: Insights and ob-

servations, 2023. arXiv:2310.20246.

[24] L. Ranaldi, G. Pucci, A. Freitas, Empowering cross-

lingual abilities of instruction-tuned large language

models by translation-following demonstrations, in:

L.-W. Ku, A. Martins, V. Srikumar (Eds.), Findings of

https://aclanthology.org/2024.acl-long.643/
http://dx.doi.org/10.18653/v1/2024.acl-long.643
https://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
http://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
https://aclanthology.org/2024.findings-emnlp.940/
https://aclanthology.org/2024.findings-emnlp.940/
http://dx.doi.org/10.18653/v1/2024.findings-emnlp.940
http://dx.doi.org/10.18653/v1/2024.findings-emnlp.940
https://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2210.03057
http://arxiv.org/abs/2310.20246


the Association for Computational Linguistics: ACL

2024, Association for Computational Linguistics,

Bangkok, Thailand, 2024, pp. 7961–7973. URL: https:

//aclanthology.org/2024.findings-acl.473/. doi:10.
18653/v1/2024.findings-acl.473.

[25] A. Üstün, V. Aryabumi, Z. Yong, W.-Y. Ko,

D. D’souza, G. Onilude, N. Bhandari, S. Singh, H.-L.

Ooi, A. Kayid, F. Vargus, P. Blunsom, S. Longpre,

N. Muennighoff, M. Fadaee, J. Kreutzer, S. Hooker,

Aya model: An instruction finetuned open-access

multilingual language model, in: L.-W. Ku,

A. Martins, V. Srikumar (Eds.), Proceedings of

the 62nd Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Pa-

pers), Association for Computational Linguistics,

Bangkok, Thailand, 2024, pp. 15894–15939. URL:

https://aclanthology.org/2024.acl-long.845/. doi:10.
18653/v1/2024.acl-long.845.

[26] L. Ranaldi, G. Pucci, F. M. Zanzotto, Modeling eas-

iness for training transformers with curriculum

learning, in: R. Mitkov, G. Angelova (Eds.), Pro-

ceedings of the 14th International Conference on

Recent Advances in Natural Language Processing,

INCOMA Ltd., Shoumen, Bulgaria, Varna, Bulgaria,

2023, pp. 937–948. URL: https://aclanthology.org/

2023.ranlp-1.101/.

[27] L. Ranaldi, G. Pucci, F. M. Zanzotto, How far

does the sequence of compositions impact multi-

lingual pre-training?, in: F. Dell’Orletta, A. Lenci,

S. Montemagni, R. Sprugnoli (Eds.), Proceedings

of the 10th Italian Conference on Computational

Linguistics (CLiC-it 2024), CEUR Workshop Pro-

ceedings, Pisa, Italy, 2024, pp. 796–804. URL: https:

//aclanthology.org/2024.clicit-1.86/.

[28] L. Ranaldi, F. Ranaldi, G. Pucci, R2-MultiOmnia:

Leading multilingual multimodal reasoning via self-

training, in: W. Che, J. Nabende, E. Shutova, M. T.

Pilehvar (Eds.), Proceedings of the 63rd Annual

Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers), Association for

Computational Linguistics, Vienna, Austria, 2025,

pp. 8220–8234. URL: https://aclanthology.org/2025.

acl-long.402/. doi:10.18653/v1/2025.acl-long.
402.

[29] L. Ranaldi, G. Pucci, Knowing knowledge: Epis-

temological study of knowledge in transform-

ers, Applied Sciences 13 (2023). URL: https://

www.mdpi.com/2076-3417/13/2/677. doi:10.3390/
app13020677.

[30] G. Pucci, F. M. Zanzotto, L. Ranaldi, Animate,

or inanimate, that is the question for large lan-

guage models, Information 16 (2025). URL: https://

www.mdpi.com/2078-2489/16/6/493. doi:10.3390/
info16060493.

[31] M. Mastromattei, L. Ranaldi, F. Fallucchi, F. M. Zan-

zotto, Syntax and prejudice: ethically-charged

biases of a syntax-based hate speech recognizer

unveiled, PeerJ Computer Science 8 (2022) e859.

URL: http://dx.doi.org/10.7717/peerj-cs.859. doi:10.
7717/peerj-cs.859.

[32] L. Ranaldi, Survey on the role of mechanistic inter-

pretability in generative ai, Big Data and Cognitive

Computing 9 (2025). URL: https://www.mdpi.com/

2504-2289/9/8/193. doi:10.3390/bdcc9080193.

[33] F. Ranaldi, E. S. Ruzzetti, D. Onorati, L. Ranaldi,

C. Giannone, A. Favalli, R. Romagnoli, F. M. Zan-

zotto, Investigating the impact of data contam-

ination of large language models in text-to-SQL

translation, in: L.-W. Ku, A. Martins, V. Sriku-

mar (Eds.), Findings of the Association for Com-

putational Linguistics: ACL 2024, Association for

Computational Linguistics, Bangkok, Thailand,

2024, pp. 13909–13920. URL: https://aclanthology.

org/2024.findings-acl.827/. doi:10.18653/v1/2024.
findings-acl.827.

[34] F. Ranaldi, A. Zugarini, L. Ranaldi, F. M. Zan-

zotto, Protoknowledge shapes behaviour of llms

in downstream tasks: Memorization and general-

ization with knowledge graphs, 2025. URL: https:

//arxiv.org/abs/2505.15501. arXiv:2505.15501.

https://aclanthology.org/2024.findings-acl.473/
https://aclanthology.org/2024.findings-acl.473/
http://dx.doi.org/10.18653/v1/2024.findings-acl.473
http://dx.doi.org/10.18653/v1/2024.findings-acl.473
https://aclanthology.org/2024.acl-long.845/
http://dx.doi.org/10.18653/v1/2024.acl-long.845
http://dx.doi.org/10.18653/v1/2024.acl-long.845
https://aclanthology.org/2023.ranlp-1.101/
https://aclanthology.org/2023.ranlp-1.101/
https://aclanthology.org/2024.clicit-1.86/
https://aclanthology.org/2024.clicit-1.86/
https://aclanthology.org/2025.acl-long.402/
https://aclanthology.org/2025.acl-long.402/
http://dx.doi.org/10.18653/v1/2025.acl-long.402
http://dx.doi.org/10.18653/v1/2025.acl-long.402
https://www.mdpi.com/2076-3417/13/2/677
https://www.mdpi.com/2076-3417/13/2/677
http://dx.doi.org/10.3390/app13020677
http://dx.doi.org/10.3390/app13020677
https://www.mdpi.com/2078-2489/16/6/493
https://www.mdpi.com/2078-2489/16/6/493
http://dx.doi.org/10.3390/info16060493
http://dx.doi.org/10.3390/info16060493
http://dx.doi.org/10.7717/peerj-cs.859
http://dx.doi.org/10.7717/peerj-cs.859
http://dx.doi.org/10.7717/peerj-cs.859
https://www.mdpi.com/2504-2289/9/8/193
https://www.mdpi.com/2504-2289/9/8/193
http://dx.doi.org/10.3390/bdcc9080193
https://aclanthology.org/2024.findings-acl.827/
https://aclanthology.org/2024.findings-acl.827/
http://dx.doi.org/10.18653/v1/2024.findings-acl.827
http://dx.doi.org/10.18653/v1/2024.findings-acl.827
https://arxiv.org/abs/2505.15501
https://arxiv.org/abs/2505.15501
http://arxiv.org/abs/2505.15501


A. SAGE Instruction Template

#Role

You are an experienced expert skilled in multilingual mathematical reasoning problems.

#Task

You are presented with a mathematical reasoning problem in a given language. Follow the steps below

rigorously to formalise and solve it.

#Instructions

1) Formalisation (Language-Agnostic): Identify and define the key mathematical components of

the problem, such as variables, functions, operations, and constraints. Structure these components

in an abstract manner to ensure a clear and precise formulation. Label this step as <formalisa-
tion>....</formalisation>

2) Reasoning Execution: Solve the problem systematically by breaking it into logical steps. Clearly

justify each step using natural language explanations while maintaining logical rigor. Express the final

answer in the same language as the input query. Label this step as <reasoning>....</reasoning>

Final Answer: Present the extracted answer in a concise format, marked as “The answer is: [num]” in

the same language as the query. Label this step as <answer>....</answer>

#Question

{question}

Table 4

The SAGE instructs the model to abstract problem components and deliver step-wise reasoning paths that lead the model to

solve multilingual tasks. Following [11] we propose principled reasoning framework based on structured step-wise passages to

reach the final solution.



B. Annotations Pipeline

We use SAGE to generate synthetic demonstrations for

training smaller LLMs. We use GPT-4o as an annotator and

use the annotations to warm-up the models with the

proposed methodologies. We then conduct a complete

Self-training phase. Moreover, we conduct the Self-training

by using self-generated data (generated by the trained

models themselves). We define these configurations

‘Full’-Self-training. In both cases, the demonstrations are

generated by prompting the models using instructions

detailed in Appendix A. However, while GPT-4o follows the

instructions well (in fact, we did not find any significant

issues), the other models generate outcomes that include

errors. To handle this, we evaluated the quality of the

generated demonstrations by filtering out inaccurate

examples to get a gold instruction set. In particular, we

removed all inaccurate answers (outputs that do not match

the exact target string metric). Then, we control if the

demonstrations follow correctly the steps indicated in our

prompt (see Table 4) using GPT-4o-mini and the prompt in

Appendix ??.

C. Evaluation Metrics

We used a double-check to assess the accuracy of the

responses delivered in the different experiments. In the first

step, we used an exact-match heuristic. However, since some

experiments required a more accurate response check, we

used GPT-4o-mini as a judge.

D. Models and Hyperparameters

Hyperparameters In §3.2, we described the standard

Self-training setting. However, we have proposed different

experimental settings. In the Self-training experimental

setting, we conducted three iterations as proposed in [12, 14].

In the SFT-only and RL-only settings, we used warm-up and

four epochs and 8000 steps, respectively. We conducted this

study after the pilot experiments shown in the previous

sections.

E. Models Vesions

Model Version

Llama3-8(-instruct) meta-llama/Meta-Llama-3-

8B-Instruct

Phi-3(-mini-instruct) microsoft/Phi-3-mini-4k-

instruct

DeepSeekMath-7B deepseek-ai/deepseek-math-

7b-instruct

GPT-4o gpt-4o-2024-08-06

GPT-4o-mini gpt-4o-mini-2024-07-18

Table 5

List the versions of the models proposed in this work, which

can be found on huggingface.co. We used all the default con-

figurations proposed in the repositories for each model.

F. Data Composition

As evaluation sets, we use the tasks introduced in §3.3. These

tasks are used to assess the performance of LLMs, but they

do not have reserved sets for evaluation and training.

Therefore, to produce a training set, we split mSVAMP into

training and testing. Table 6 shows the instances of each

dataset in training and testing. To ensure the languages are

perfectly balanced, we translated 350 samples from English to

Telugu (language non-present in mSVAMP). This subset was

used for training purposes only.

Task Total Test Train. Set # dim

mGSM 0.5𝑘 0.5𝑘 No No

mGSM-Symbolic 0.5𝑘 0.5𝑘 No No

mSVAMP 2𝑘 0.5𝑘 Yes 1𝑘

Table 6

Training and evaluation data. *(1𝑘 is equal to 1000).

The data are perfectly balanced between the languages in the

proposed tasks. However, as described in Appendix B, the

qualities of the annotations are not perfect. Behind filtering

the annotations, we obtained a reduced dataset. To have fair,

balanced subsets, we use 1k samples in total. We use 1k

samples when instructing the models for DPO and SFT. For

the Self-training, we used as the initial subset (§2.2) 60% of

the filtered samples balanced between all languages.

G. Number of Iterations

Following pilot experiments, we set the number of iterations

of self-tuning at three. Figure 7 shows the performance trend

by increasing the number of iterations, epochs and steps after

warm-up (wup).

Table 7

Average accuracies on mGSM.
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