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Abstract
While Automated Machine Learning (AutoML) systems have shown strong performance on structured data, their application
to natural language processing (NLP) tasks remains limited by static, task-agnostic search spaces. In this work, we propose
a context-aware extension of AutoPyTorch that dynamically adapts both the hyperparameter search space and neural
architecture configuration based on corpus-level meta-features. Our approach extracts interpretable textual statistics—such
as average sequence length, vocabulary richness, and class imbalance—to guide the configuration of key hyperparameters.
We also introduce two adaptive neural backbones, whose structures are shaped by these meta-features to improve model
expressiveness and generalization. Experiments on 20 diverse text classification datasets—including subsets of GLUE,
selected Kaggle benchmarks, and private corpora—demonstrate consistent performance improvements over strong baselines,
particularly on datasets with limited training samples or severe class imbalance. Our results highlight the effectiveness of
integrating dataset-level insights into the AutoML search process for NLP.
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1. Introduction
AutoML frameworks have significantly advanced the de-
mocratization of machine learning by automating the
design and optimization of learning pipelines. While
these systems have shown strong performance on struc-
tured data, their extension to NLP tasks remains limited
due to the inherent complexity and diversity of textual
data. Text classification, a core NLP task, presents unique
challenges stemming from variable input lengths, diverse
syntactic structures, and high lexical variation—factors
that are often overlooked in conventional AutoML work-
flows.

Most current AutoML approaches for NLP adopt static
pipeline configurations and search spaces, treating all
datasets uniformly regardless of their linguistic charac-
teristics. Even when modern frameworks include neural
networks or transformer models, their hyperparameter
search is usually performed within generic, manually
designed boundaries. This static design neglects crucial
dataset-specific properties such as text length distribu-
tion, vocabulary richness, or class imbalance, which are
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known to affect both model architecture performance and
training dynamics [1, 2]. As a result, these frameworks
may perform poorly on unusual or domain-specific text
datasets, where generic configurations fail to address
context-specific requirements.

To address this gap, we propose a context-aware exten-
sion of an AutoML Framework that dynamically adapts
its hyperparameter search space and model architecture
decisions based on corpus-level meta-features. Our ap-
proach integrates a systematic extraction of statistical
and linguistic characteristics from each dataset—such
as text length variability, lexical diversity, sample size,
and class distribution—and uses these to inform both the
configuration of search spaces and the structural design
of neural backbones. By leveraging these insights, the
system can better align model complexity, optimization
schedules, and architectural choices with the demands
of the data.

This paper makes two main contributions: First, we
introduce a context-aware mechanism for dynamically
adapting the hyperparameter search space in AutoML
based on text-level meta-features such as text length, vo-
cabulary diversity, and class imbalance. This enables the
AutoML process to tailor its optimization bounds—e.g.,
for batch size, learning rate, and dropout—according to
the statistical profile of each dataset. Second, we propose
two adaptive neural backbones, MetaMLP and Contextu-
alAttentionNet, whose configurations are shaped by sta-
tistical and lexical characteristics of the input text. These
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backbones enable the system to construct models from
scratch that better reflect the structural and distributional
properties of the data. Together, these innovations facil-
itate a more robust and efficient adaptation of AutoML
pipelines to the unique demands of text classification
tasks.

2. Related Works
Automated Machine Learning (AutoML) aims to stream-
line model development by automating the processes of
feature engineering, model selection, and hyperparame-
ter tuning. While AutoML has become widely successful
for structured data, its adaptation to natural language pro-
cessing (NLP) tasks, particularly text classification, poses
unique challenges due to the complexity and diversity of
textual data. In this section, we review existing research
relevant to AutoML applications in NLP, focusing on the
limitations of current AutoML frameworks, the role of
dataset-driven meta-features, and recent developments
in customizing both hyperparameter search spaces and
neural architectures specifically tailored to text data.

2.1. AutoML for NLP Tasks and Search
Space Design

Automated machine learning (AutoML) has traditionally
excelled on structured (tabular) data, whereas applying it
to raw text required additional effort to convert text into
features [2]. In recent years, several AutoML frameworks
have been extended to handle text classification, integrat-
ing NLP-specific models and pipeline steps. For example,
AutoGluon and AutoKeras can handle deep NLP models
(including modern transformers) for classification, with
search spaces that encompass state-of-the-art architec-
tures like BERT and RoBERTa [3, 4]. AutoKeras even
adjusts its search space based on the task modality: it
detects when the input is text and accordingly includes
appropriate text vectorization and neural network blocks
in the configuration space [3]. Cloud-based AutoML ser-
vices such as Azure AutoML typically treat text as generic
input features (e.g., via TF-IDF or bag-of-words) and do
not customize hyperparameter settings based on dataset-
specific characteristics [5].

Notably, researchers have evaluated general AutoML
tools on NLP tasks by converting text to fixed embed-
dings (e.g. using Sentence-BERT to obtain features) to
fit into a tabular AutoML pipeline [6, 7, 8]. These tools
can discover effective models for text data, but they typi-
cally operate within broad, fixed search spaces and often
lack mechanisms for fine-grained hyperparameter tun-
ing tailored to a specific corpus. In other words, current
AutoML frameworks for NLP tend to follow a one-size-
fits-all approach, leaving potential efficiency gains from

dataset-specific adaptation largely untapped. Moreover,
they rely on selecting from existing machine learning or
neural network architectures, rather than dynamically
constructing models based on the unique characteristics
of the textual data.

2.2. Meta-Features and Meta-Learning for
AutoML in NLP

To guide model selection and hyperparameter optimiza-
tion, many studies have leveraged dataset characteristics
(so-called meta-features). Early work by Lam and Lai [1]
characterized text datasets with a small set of features
(e.g., number of documents, vocabulary size, average
document length) to predict the classification error of
different algorithms, thus recommending the best classi-
fier for the task. This pioneering meta-learning approach
demonstrated that simple corpus-level metrics can in-
form algorithm selection. Subsequent research greatly
expanded the repertoire of meta-features for NLP. For in-
stance, Madrid et al. [2] define 72 corpus-level attributes
– covering general dataset properties, class imbalance,
lexical diversity, stylometry, statistical measures, and
readability indices – to drive automated selection of text
representation techniques. Many of these features cap-
ture precisely the kind of information used in our ap-
proach for another goal, which is automatic customiza-
tion of the search space and not a text representation
method, such as average and standard deviation of docu-
ment length, vocabulary richness (unique word ratios),
number of classes, and so on. By extracting such meta-
features from a new text dataset, one can compare them
to previously seen tasks and infer which models or hy-
perparameter settings might be appropriate. Researchers
have applied meta-features in various meta-learning sys-
tems for NLP. Gomez et al. [9] introduced an evolution-
ary meta-learning method (ELMR) that uses 11 statistical
meta-features of a text corpus to evolve rules for select-
ing the optimal classifier. Their approach automatically
learned decision rules (via a genetic algorithm) to iden-
tify, for example, when a Naïve Bayes vs. SVM vs. neural
model would be most effective, based on corpus charac-
teristics. In a broader approach, Ferreira and Brazdil [10]
leveraged an active testing strategy to recommend full
text-classification pipelines, evaluating candidate prepro-
cessing methods and classifiers on small data samples
and using meta-features to pick the best pipeline. Meta-
learning has also been used to warm-start hyperparam-
eter optimization in general AutoML frameworks. Fer-
reira and Brazdil [10] successfully employed 46 dataset
descriptors to initialize Bayesian hyperparameter search
in Auto-Sklearn, improving efficiency by starting from
configurations that worked well on similar prior datasets.
More recently, Desai et al. [11] built a text AutoML sys-
tem that uses a minimal set of only three meta-features



(e.g. dataset size, average sentence length) to choose
among three Transformer architectures (BERT, ALBERT,
XLNet) for a classification task. Despite its limited scope
(restricted to only a few models), this work demonstrated
the promise of corpus features in guiding model selection
for NLP. Our approach extends these concepts further
by integrating a set of corpus-level characteristics to dy-
namically guide not only architecture selection but also
hyperparameter tuning within AutoPyTorch, leveraging
its capability to construct neural networks from scratch,
which is essential for effectively handling the diverse and
complex nature of textual data.

In summary, prior research shows that incorporating
dataset-derived features, ranging from simple counts to
complex linguistic metrics, can significantly enhance au-
tomated model selection and configuration in NLP. How-
ever, these approaches predominantly focus on selecting
among predefined models or representations. To the best
of our knowledge, this work is the first to dynamically
adjust the hyperparameter search space itself based on
dataset-derived meta-knowledge, specifically aimed at
constructing deep learning models from scratch.

2.3. Hyperparameter Search Space
Adaptation in AutoML

Typical AutoML systems rely on a fixed, expert-designed
search space intended to be generic across many datasets.
For example, Auto-WEKA formalized the Combined
Algorithm Selection and Hyperparameter optimization
(CASH) problem—searching over a joint space of 27 base
classifiers, their respective hyperparameters, and various
feature-selection techniques—using Bayesian optimiza-
tion to navigate hundreds of parameters without dataset-
specific specialization [12]. Auto-Sklearn similarly con-
structs a broad configuration space of 15 classifier types
and over 110 hyperparameters (spanning preprocessing
and classifiers) yet remains agnostic to the particular
characteristics of the input data [13]. While such com-
prehensive spaces can cover many scenarios, they are
often inefficient: many configurations may be irrelevant
or suboptimal for a particular text dataset. For instance, a
small set of short tweets likely does not require deep en-
sembles or large n-gram ranges, yet a static search space
devotes trials indiscriminately to these options. This inef-
ficiency has motivated research into reducing or tuning
the search space based on prior knowledge.

One line of work is search space transfer via meta-
learning. Wistuba et al. [14] first proposed to leverage ex-
perience from previous hyperparameter optimizations to
constrain the search for a new task. In their approach, the
hyperparameter space is narrowed to a region (defined
by a center point and radius) believed to contain good so-
lutions, effectively pruning away less promising regions.
They explored designing a smaller, task-specific search

space for the target problem instead of using the default
full space. By transferring knowledge of what configura-
tions worked well on similar datasets, these methods aim
to accelerate HPO by focusing on the most relevant parts
of the space. Such techniques have shown benefits in
general AutoML settings, reducing the dimensionality or
bounds of hyperparameters to improve search efficiency.
However, applying this idea in the NLP domain remains
relatively unexplored – current AutoML tools do not au-
tomatically adjust fundamental hyperparameter ranges
(e.g. maximum vocabulary size, network depth, learning
rate schedules) based on text-specific data characteris-
tics. The search space is usually defined a priori (often
by human experts) and stays fixed regardless of whether
the text data consists of tweets or pages of encyclopedia,
or whether the vocabulary is 500 words or 50,000 words.

Recently, a few nascent approaches have hinted at
the potential of dataset-driven search space adaptation.
Notably, Zero-Shot AutoML techniques combine meta-
learning with model selection to configure pipelines with-
out any trial-and-error on the new data. For example, the
ZAP framework by Öztürk et al. [15] attempts to directly
select a pretrained model and its fine-tuning hyperpa-
rameters for a new dataset in a zero-shot manner. ZAP
trains a meta-model on a large collection of prior tasks,
using only trivial meta-features of each dataset (such as
image resolution or the number of classes) to predict the
best pipeline. In their vision domain experiments, this
approach could successfully pick an appropriate model
and hyperparameter configuration without searching,
underscoring that even coarse dataset descriptors can
be informative for hyperparameter decisions. This idea
is very much in line with our goal of text-aware search
space customization. However, aside from such cutting-
edge research prototypes, mainstream AutoML for NLP
still lacks the capability to dynamically tailor the hyper-
parameter search space based on the dataset.

2.4. Text-Oriented Architecture Search &
Pruning

Recent research in AutoML for NLP has focused on tailor-
ing neural architectures to the needs of text data. Neural
Architecture Search (NAS) techniques, when specialized
for textual tasks, have proven effective in discovering
model structures that outperform generic designs. For ex-
ample, Wang et al. [16] propose TextNAS, a search space
explicitly designed for text representation, and show that
automatically discovered architectures can surpass manu-
ally crafted networks on sentiment analysis and inference
tasks. These results highlight that text-specific search
spaces – incorporating layers like CNNs or RNNs suited
to sequence data – can yield state-of-the-art performance
where off-the-shelf image-inspired architectures falter.
In parallel, the emergence of large pre-trained language



models has motivated architecture pruning and adap-
tation strategies. Rather than treat one model size as
fit-for-all, researchers leverage NAS to compress or se-
lect architectures appropriate for a given task’s resource
constraints. For instance, NAS-BERT uses neural archi-
tecture search to automatically prune BERT, producing
a family of smaller models that retain accuracy across
tasks while meeting various latency or memory require-
ments [17]. Collectively, these efforts underscore that
architecture-level customization is crucial for optimizing
NLP pipelines. By adjusting neural backbones to text
characteristics (lengthy inputs, specialty domains, etc.),
NAS and pruning approaches lay the foundation for more
adaptive AutoML solutions.

While significant advances have been made in
both meta-feature-driven hyperparameter tuning and
architecture-level customization (NAS/pruning), these
areas have evolved somewhat separately. To date, there
remains an absence of integrated methods that dynami-
cally combine architecture selection with hyperparame-
ter optimization based on explicit text dataset characteris-
tics. Our paper directly addresses this gap by introducing
a unified framework within AutoPyTorch that adapts
both model architectures and hyperparameter config-
urations based on corpus-specific meta-features. This
approach ensures that every component of the AutoML
pipeline—from model structure to training parameters—is
tailored specifically for the dataset at hand, leading to a
more efficient and robust text-classification solution.

3. Methodology
Our objective is to enhance the adaptability and perfor-
mance of AutoML systems for text classification by dy-
namically customizing both the hyperparameter search
space and neural architectures based on intrinsic proper-
ties of the input dataset. We implement this within the
AutoPyTorch framework, which offers modular exten-
sibility, fine-grained pipeline control, and full support
for deep learning models constructed from scratch. This
flexibility is especially valuable for textual data, where
architectural decisions—such as incorporating attention
mechanisms or shaping MLPs—must align with dataset-
specific traits like sequence length, lexical diversity, and
class imbalance [18, 19].

Unlike other AutoML frameworks that rely on fixed
pipelines or pre-trained models, our approach enables
the construction of neural architectures that are directly
informed by corpus-level characteristics. Prior work
has shown that such dynamic, data-driven architecture
generation leads to better generalization and improved
performance, particularly in heterogeneous or domain-
specific scenarios [20, 21]. These findings motivate our
design of a context-aware adaptation mechanism that

leverages meta-features to steer both model configura-
tion and training strategy during the AutoML search,
effectively bridging the gap between static AutoML sys-
tems and the flexible demands of NLP tasks.

3.1. Text-Level Meta-Feature Extraction
To support both hyperparameter configuration and
model architecture design (e.g., number of neurons and
layers), we extract a comprehensive set of text-level meta-
features using an enhanced analysis function. These in-
clude:

3.1.1. Text Length

Text length is a critical meta-feature in NLP that im-
pacts both architecture selection and hyperparameter
configuration. Short texts (e.g., fewer than 10 tokens)
lack sufficient semantic context, leading to poor model
performance, as shown in McCartney et al. [22]. Con-
versely, very long texts exceed transformer input limits
(e.g., 512 tokens in BERT) and require either truncation or
specialized architectures such as Hierarchical Attention
Networks (HAN) [23] or Longformer [24].

To address these issues, we compute the average and
standard deviation of text length at the corpus level and
incorporate them into multiple stages of the AutoML
pipeline. Specifically, long average sequence lengths trig-
ger smaller batch sizes (e.g., 8–16 for texts >300 char-
acters), shorter warm-up periods in cosine annealing
schedules, and reduced learning rates to stabilize train-
ing. Additionally, we adapt the architectural shape of
candidate MLP backbones: datasets with long inputs
receive “long funnel” configurations to compress high-
dimensional sequences, while very short texts invoke
compact “diamond” shapes to avoid overfitting. High
variance in length distribution increases regularization
(via dropout) to ensure generalization across variable-
length inputs.

This integration ensures that the AutoML system dy-
namically aligns model complexity and optimization be-
havior with the distributional characteristics of the input
text, improving both efficiency and robustness in the
search process.

3.1.2. Vocabulary Richness and Lexical Diversity

Vocabulary richness—commonly measured using the
type-token ratio (TTR) or corpus-level approximations
such as the unique-to-total word ratio—reflects the se-
mantic complexity of a text corpus. Higher lexical di-
versity increases the dimensionality of the input space
and often correlates with more complex linguistic struc-
ture [25, 26], requiring models with greater expressive
capacity. From a theoretical standpoint, diverse corpora



demand models with higher VC dimension and wider
hypothesis classes to capture nuanced patterns [27].

To account for this, our system dynamically adapts
architectural complexity based on measured lexical di-
versity. For datasets with a high unique word ratio (e.g.,
> 0.3), we increase the number of neuron groups and
expand the maximum layer width (max_units) in our
text-aware MLP-based backbone, allowing the model to
better capture semantic variation. Conversely, for low-
diversity corpora, we reduce network width and depth
to prevent overfitting. In addition, the backbone shape
is adjusted: high-diversity texts favor "long funnel" ar-
chitectures, while simpler datasets default to "diamond"-
shaped or regular "brick-like" architectures composed
of repeated modules. We also modify activation func-
tions: when diversity is low and the default ReLU may
underperform, GELU is automatically selected to improve
representation power for simple patterns.

These adaptations ensure that both the search space
and the resulting architectures reflect the semantic vari-
ability of the input corpus, allowing the AutoML process
to match model expressiveness with linguistic richness.

3.1.3. Number of Samples

The number of training examples is a fundamental meta-
feature that influences model complexity, training dynam-
ics, and generalization behavior. Small datasets tend to
increase the risk of overfitting—particularly when using
high-capacity neural networks—whereas large datasets
enable the use of deeper models, longer training sched-
ules, and reduced regularization. This is grounded in
statistical learning theory, which links generalization
error to both the size of the hypothesis class and the
number of available training samples [28]. Empirical
studies support this connection: Domhan et al. [29] and
Probst et al. [30] show that both training regimes and op-
timal hyperparameter values (e.g., learning rate, dropout)
scale with dataset size.

In our approach, we compute the number of training
samples during meta-feature extraction and use this to
adapt the AutoML search space. For datasets with fewer
than 1,000 examples, we expand the dropout search space
(up to 0.8), reduce learning rates, and favor simpler back-
bones such as narrow MLPs or shallow attention blocks.
Training budgets are also capped to avoid overfitting un-
der data scarcity. In contrast, datasets with more than
10,000 samples prompt relaxed regularization and en-
able higher-capacity configurations, such as increased
max_units and longer training horizons. These modifi-
cations ensure that the resulting models are appropriately
scaled to the statistical regime of the dataset, improving
both robustness and computational efficiency.

3.1.4. Label Distribution and Class Imbalance

Imbalanced class distributions are a common challenge
in text classification, where certain categories (e.g., hate
speech, fraud cases) are underrepresented but critically
important. When the class imbalance ratio—the propor-
tion between the most and least frequent class—exceeds a
certain threshold, classification performance for minority
classes deteriorates due to model bias toward majority
labels [31, 32]. This bias arises from the difficulty of
estimating rare class probabilities under skewed priors,
which leads to inaccurate posterior approximations, es-
pecially when using symmetric loss functions such as
cross-entropy.

In our AutoML framework, class imbalance is mea-
sured during the meta-feature extraction phase and di-
rectly influences the search space configuration. For
datasets with imbalance ratios exceeding 3.0, we expand
the dropout range (e.g., up to 0.8), reduce learning rates,
and increase the warm-up period in cosine learning rate
schedules. These measures are designed to stabilize train-
ing under uneven gradient updates and reduce overfit-
ting to dominant classes. Conversely, for nearly balanced
datasets (imbalance ratio below 1.5), regularization is
relaxed to allow more expressive learning.

Although architectural constraints are not enforced
strictly based on imbalance, our search space prioritizes
configurations that are empirically robust to imbalance,
such as residual-normalized attention layers or funnel-
shaped MLPs. Together, these mechanisms enable the
AutoML system to maintain balanced performance across
both major and minor classes.

4. Experiments
To evaluate the effectiveness of our context-aware Au-
toML framework for text classification, we conducted
comprehensive experiments on 20 diverse datasets. Our
experiments were designed to compare the performance
of our proposed context-aware AutoPyTorch against a
strong baseline using static configurations in AutoPy-
Torch.

4.1. Datasets
We conduct experiments on a diverse collection of
datasets, including a stratified 30% subset of each task
from the GLUE benchmark [33], a widely used evalu-
ation suite for natural language understanding. GLUE
(General Language Understanding Evaluation) consists of
multiple sentence-level and sentence-pair classification
tasks, covering linguistic phenomena such as entailment,
paraphrase detection, sentiment analysis, and grammati-
cality judgment. Our subset selection balances computa-
tional feasibility and label distribution fidelity, enabling



efficient neural architecture search within AutoPyTorch
while maintaining representative task characteristics.

In addition to GLUE, we evaluate our approach on
selected Kaggle datasets that span various text classifi-
cation domains (e.g., emotion detection, spam filtering),
as well as two private corpora in German. These pri-
vate datasets address real-world classification tasks and
introduce additional linguistic and domain-specific vari-
ability, allowing us to assess the generalizability of our
context-aware AutoML framework across both English
and German texts. Detailed dataset statistics are provided
in Table 1.

Table 1
Dataset statistics and evaluation metrics. The metric choice
reflects task type and class balance.

Dataset Samples Labels Is Balanced Skew Metric

GLUE (30% subset)
QQP 238,572 3 No 2.62 F1-micro
WNLI 255 3 No 2.45 F1-micro
MRPC 1,740 2 No 2.05 F1-micro
CoLA 3,197 3 No 6.34 MCC
RTE 1,730 3 No 2.18 F1-micro
QNLI 34700 3 No 10 Accuracy
SST-2 21012 3 No 10.09 Accuracy
STS-B 2588 3 No 20.88 Pearson

Public and Private Datasets (subset)
Framing 4,063 2 No 1.67 F1-macro
Troll 517 2 Yes 1.26 Accuracy
Emotion 42,424 2 Yes 1.12 Accuracy
Occupation 10,000 9 No 31.32 F1-micro
Humor 4,000 2 Yes 1.00 Accuracy
Cyber 1665 2 Yes 1.11 Accuracy
BBC 2225 5 Yes 1.32 Accuracy
Math 860 11 No 0.8 F1-Micro
Spam 10455 2 Yes 1.11 Accuracy
Emails 649 2 No 1.5 F1-Micro
Finished Sentence 7973 2 No 4 F1-Micro
Job 2682 2 No 19.63 F1-Micro

4.2. Embedding Method
For all experiments, we used the all-MiniLM-L6-v2
model from the SentenceTransformers library to gener-
ate contextualized text embeddings. The model encodes
each input text into a fixed-size dense vector of 384 di-
mensions.

To ensure a controlled comparison between the base-
line and our proposed method, the embedding layer was
kept identical across all experimental conditions.

4.3. Model Framework & Search Strategy
We implemented all experiments using the AutoPyTorch
framework, leveraging its modular design for deep learn-
ing pipelines and extensible search space control. To
ensure focus on neural architecture optimization, the
traditional machine learning components (e.g., random
forests, SVMs) were disabled for our approach. Only deep
learning backbones were allowed in the search space.

Specifically, the following backbone architectures were
included as candidates:

• MetaMLP – a custom MLP architecture whose
depth, width, and shape are dynamically adapted
based on meta-features such as text length, lexi-
cal diversity, number of samples, and class imbal-
ance.

• Contextual AttentionNet – a lightweight
attention-based model built with multi-head self-
attention layers, with structural parameters (e.g.,
number of heads, embedding dimensions) condi-
tioned on input characteristics.

These architectures were treated as a categorical hy-
perparameter within the AutoML pipeline, allowing the
search process to explore and select the most appropriate
model type using Bayesian optimization.

The text-aware version of our pipeline integrates the
meta-feature extraction step at the beginning of each
AutoPyTorch run. The extracted corpus-level properties
are then used to dynamically adapt the hyperparameter
search space. Key adaptations include:

• Batch size adjustments based on average se-
quence length;

• Learning rate and dropout range scaling based
on dataset size and class imbalance;

• Architectural shaping (e.g., diamond vs. funnel
MLPs) based on input diversity and length vari-
ance.

All experiments were constrained to a wall-clock time
of 3,000 seconds (approx. 2 hours) and a per-model train-
ing time of 600 seconds. We used multi-fidelity opti-
mization via Successive Halving with a training budget
ranging from 10 to 100 epochs.

All runs were executed on a single NVIDIA A100 GPU
machine with 40 GB of memory, using standard 32-bit
floating point precision.

4.4. Baseline Configuration
To establish a fair comparison, we define a strong baseline
using the unmodified AutoPyTorch framework and the
same text embedding method (MiniLM). In this setting,
the hyperparameter search space remains static and is
not influenced by any dataset-specific meta-features.

4.5. Results
Tables 2 and 3 summarize the performance of our context-
aware AutoML pipeline in comparison to a static Au-
toPyTorch baseline across 20 text classification datasets.
The evaluation was based on four widely used metrics:
Accuracy, F1-micro, Matthews Correlation Coefficient



(MCC), and Pearson correlation. These metrics were
selected to reflect the characteristics of each task—for
example, Accuracy for balanced classification tasks, F1-
micro for imbalanced or multi-class problems, MCC for
binary grammaticality judgments (e.g., CoLA), and Pear-
son correlation for sentence similarity (STS-B). Notably,
these are also the official evaluation metrics adopted in
the GLUE benchmark [33], ensuring compatibility and
comparability with prior NLP research.

Overall, our method demonstrates consistent improve-
ments, particularly on tasks characterized by limited
training data, class imbalance, or high lexical diversity.

On the GLUE benchmark, our pipeline yields signif-
icant gains on several tasks. Notably, WNLI accuracy
increases from 17.6% to 54.9%, and SST-2 sees a dramatic
rise from 2.1% to 83.4%. These results highlight the ef-
fectiveness of our adaptive architecture and regulariza-
tion mechanisms in low-resource and sentiment-sensitive
tasks. We also observe improvements in STS-B, where
the Pearson correlation increases from 24.7% to 30.7%.
Conversely, slight performance drops are observed in
QNLI and CoLA, which may suggest that the current
adaptation strategy occasionally introduces suboptimal
regularization or architectural choices. For QQP, both
the baseline and our pipeline failed to build a viable neu-
ral or ensemble model within the computational budget,
resulting in fallback to a dummy classifier.

Our pipeline also outperforms the baseline on the
majority of Kaggle and private datasets. Substantial
gains are observed on Emails (from 66.9% to 76.2%), Troll
(from 52.9% to 56.7%), and Finished Sentence (from 79.4%
to 81.1%), indicating that context-aware adaptation im-
proves performance in tasks with either noisy data or
subtle class distinctions. A slight performance decrease
is observed on a few tasks, such as BBC and Occupa-
tion. In the case of Occupation, the drop in performance
can be attributed to the nature of the dataset: it con-
sists of short, open-ended answers to questions about
a person’s job, which are then mapped to the top-level
labels of the German occupation classification system
(KldB). These free-text responses are often terse (e.g.,
one- or two-word entries like “Technician” or “Sales”)
and lack sufficient contextual information to support nu-
anced classification. As a result, the dynamic adaptation
mechanisms—designed to adjust architectures and hyper-
parameters based on richer linguistic cues—have limited
room to operate effectively. The scarcity of semantic con-
text may also hinder the effectiveness of embeddings and
prevent the model from learning discriminative patterns
across fine-grained occupational categories.

Overall, the results support the utility of dynamic
search space tailoring across varied domains and textual
characteristics.

Table 2
Accuracy (%) comparison between Baseline and Custom Hy-
perparameter Search across GLUE Datasets.

Dataset Accuracy/F1-Micro/MCC/Pearson

Baseline Custom

CoLA 0.05 -0.2
MRPC 72.7% 74.13%
QNLI 53.3% 50.3%
QQP 49.17% 49.17%
RTE 52.8% 53.5%
SST-2 2.1% 83.4%
STS-B 24.7% 30.72%
WNLI 17.6% 54.9%

Table 3
Prediction performance comparison between Baseline and
Custom Hyperparameter Search.

Dataset Accuracy/F1-Micro (%)

Baseline Custom

Occupation 77.9 77.3
BBC 97.3 96.85
Cyber 76.57 77.2
Emails 66.9 76.15
Emotion 87.1 88.3
Framing 69.1 71.3
Humor 91.8 92.87
Math 15.1 16.3
Spam 96.84 96.9
Job 96.46 96.27
Finished Sentence 79.43 81.12
Troll 52.88 56.73

5. Conclusion and Future Works
In this work, we proposed a context-aware AutoML
framework that dynamically adapts the hyperparameter
search space and neural architecture configurations in re-
sponse to corpus-level text features. Implemented within
the AutoPyTorch ecosystem, our approach integrates
dataset-driven meta-feature extraction with a modular
design for backbone selection and training parameter
control. Experiments across 20 datasets—including sub-
sets of GLUE and diverse public corpora—demonstrate
consistent improvements in classification performance,
particularly in scenarios with imbalanced classes, small
training sets, or high lexical diversity.

By coupling structural and optimization-level deci-
sions to dataset-specific traits, our framework offers a
promising direction for more efficient and effective Au-
toML in NLP. The results validate that even lightweight
corpus features (e.g., text length, label imbalance) can
yield meaningful adaptations to both model topology and



hyperparameter scheduling.
While our method demonstrates strong empirical

gains, several important avenues remain for future re-
search.

First, our current system relies on a limited set of meta-
features, such as average text length, vocabulary diver-
sity, and class imbalance. In future work, we aim to
extend this analysis to include finer-grained linguistic
and structural features such as average sentence length,
part-of-speech density, punctuation density, unique char-
acter ratio, and readability scores. These features may
offer deeper insight into the semantic and syntactic com-
plexity of text, enabling more informed search space
adjustments.

Second, while we implement a contextual search space
by mapping meta-features to hyperparameter ranges, this
process currently uses static, hand-crafted rules. More
expressive and structured search spaces could allow hy-
perparameter relevance and conditionality to adapt dy-
namically based on dataset characteristics. For instance,
certain architecture components or regularization pa-
rameters could be activated only when specific linguistic
conditions are met, allowing for more flexible and princi-
pled adaptation.

Finally, our current fusion strategy for resolving con-
flicts between feature influences on the same hyperpa-
rameter is based on simple heuristics—such as averaging
suggested values or intersecting ranges. In future work,
we plan to investigate more flexible fusion mechanisms,
such as weighting meta-features by importance or learn-
ing fusion policies from prior task performance. These
improvements could make the contextual adaptation pro-
cess more scalable, robust, and interpretable across a
wide range of text classification tasks.

6. Limitations
Despite the overall effectiveness of our context-aware
search space design, several limitations remain.

First, while our system considers multiple meta-
features to guide hyperparameter configurations, their
influence is combined using static heuristics. This rule-
based fusion does not account for potential interactions
or conflicts between features, and lacks the flexibility to
adapt based on task-specific dynamics or prior perfor-
mance.

Second, the increased complexity introduced by text-
specific search space customization results in higher
computational cost. In most cases, we observed longer
processing times due to the additional overhead from
meta-feature analysis, search space updates, and more
expansive architecture evaluations. This may limit the
method’s applicability in time-constrained or resource-
limited environments.

Lastly, our current evaluation focuses solely on classifi-
cation tasks using moderately sized monolingual datasets.
The applicability of our approach to large-scale corpora,
multilingual benchmarks, or more complex NLP tasks
(e.g., sequence labeling or generation) remains unex-
plored.
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