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Abstract
Modern Automatic Speech Recognition (ASR) systems, based on Deep Neural Networks (DNN), have achieved remarkable
performance modelling huge quantity of speech data. However, recent studies have shown that fine-tuning pre-trained
models, despite providing a powerful solution in low-resource settings, lacks robustness across different speech styles, and
this is not just related to the amount of training data, but to substantial differences in phonetic-prosodic characteristics.
Therefore, this study aims to explore how modern E2E ASR systems’ performance is affected by the amount of training data
and the type of speech data and which acoustic-phonetic features most markedly exert an influence. To this aim, a k-fold
cross-validation was performed by fine-tuning a pre-trained FastConformer model with datasets varying in type of speech
data and size. Then we performed a correlation analysis between the values of the acoustic characteristics of the data and
the recognition scores. The analyses allow the identification of an optimal combination of speech data type and amount
of training data. Also, results show that using both more spontaneous speech or more controlled speech can be beneficial,
provided that the speech rate is contained.
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1. Introduction
Spoken language is intrinsically variable. Speech pro-
duced to convey a message can vary widely depending
on several internal and external factors, such as the com-
municative and contextual situation, the formality of
the exchange, the speaker’s disposition and individual
choices of the forms and phonetic realisation deemed as
most appropriate and functioning to convey the intended
message given the specific condition of production and
reception [1]. Thus, speech variability can be described
as the synergetic contribution of linguistic, contextual,
and social factors [2], which results in different types of
speech, often referred to as speech style, characterized
by varying levels of spontaneity, fluency, speaking rate,
prosodic variation, degree of phonic specification [3, 1].

Modern ASR systems, based on Deep Neural Networks
(DNNs), have achieved remarkable performance by mod-
elling the linguistic and acoustic features of spoken lan-
guage. However, these systems implicitly learn to model
only a small proportion of the possible variation that
characterises spoken language. As a result, error rates
increase with the degree of linguistic and phonetic vari-
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ation of the data considered. In fact, while most bench-
marks consist of read or rather controlled speech produc-
tions, the interest in ASR applications in real contexts,
such as human-machine-interactions or transcription of
spontaneous conversation, led to the evaluation of ASR
performance in different, less controlled and more sponta-
neous scenarios, which resulted in different performance
values for other types of data, e.g, lower for more spon-
taneous datasets [4]. In particular, a recent study on the
evaluation of ASR systems, based on state-of-the-art su-
pervised, self-supervised, and weakly supervised End-to-
End models, on Italian speech [5, 6], showed consistent
performance differences across speech types: dialogic,
monologic, and read speech. Namely, increasing perfor-
mance from dialogic speech to monologic speech and
from the latter to read speech.

Efforts devoted to overcoming this issue often consist
of building complex and costly models that require large
amounts of data and computational resources. However,
this can be problematic, especially when working with so-
called “low-resource languages”. Different studies have
provided evidence that a powerful solution is provided
by fine-tuning pre-trained models (see [7]). However, [8]
adopted this approach in a study on low-resource speech
recognition and showed not only a lack of robustness
in Word Error Rate (WER) distributions across different
speakers and conversation contexts, but also that this was
not related to the amount of training data, but to substan-
tial differences in prosody, pronunciation and utterance
length. This led to acknowledging that using more data
and more complex techniques is not sufficient to address
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the problem of automatically recognising different types
of data. Rather, we need to investigate how different
types of data and their specific acoustic-prosodic fea-
tures affect the performance of ASR systems to address
this robustness issue [7].

Based on this body of research, this work aims to con-
tribute to the study of how different types of speech data
are modelled and how this affects the robustness of the
model toward the definition of an optimal dataset to ob-
tain robust recognition systems.

2. Related Work
Especially, but not exclusively, within the context of low-
resource studies, the need to develop less resource-greedy
ASR systems emerges. To this end, different data effi-
ciency techniques, e.g., learning or data augmentation
techniques, have been explored, such as multilingual
transfer to provide robust acoustic word embeddings
[9, 10], self-training, where an ASR system trained with
the available human-transcribed data is used to gener-
ate transcriptions, which are then combined with the
original data to train a new ASR system, or neural TTS
synthetic data generation [11]. However, although it has
been shown that the size of training data affects the per-
formance of ASR systems, "[w]hether data augmentation
is always beneficial is an open question." [11, 723].

Another way to help achieve high performance with
minimal data may consist in relying on less but more
informative data by investigating how different types of
speech data are modelled and affect the robustness of the
model, and which combination of different speech types
and amount of data optimises the informativeness and
efficiency of a sample to fine-tune pre-trained models.

To this end, a better understanding of the aspects of
speech that challenge ASR architectures the most is re-
quired. In the last 20 years, various studies have inves-
tigated which phonetic features affect automatic recog-
nition the most (see [7] for an overview). In particular,
issues were observed to mostly concern features of con-
versational speech such as grammatical inconsistencies,
self-interruptions, backchannels, lexical and non-lexical
disfluencies, and the degree of pronunciation variation
[12, 13]. ASR systems were also observed to struggle
to recognise words with low intensity, high F0 value or
shorter duration [14]. Then, a recent study aimed at gain-
ing insight on which aspects of casual, conversational
speech cause the largest challenges for different ASR
HMM and transformer-based architectures showed that
utterance length (in number of tokens), articulation rate
and pronunciation variation exert a major influence, with
higher recognition scores correlating with longer utter-
ances, lower speech rates and lower phonetic variation
[7].

The present study aims to contribute to this line of re-
search by developing and validating a method to address
the following research questions (RQs):
RQ1. If modern E2E ASR systems’ performance is

affected by the amount of training data and the type of
speech data, can we identify the optimal combination of
speech data and amount of training data?

RQ2. What acoustic-phonetic characteristics affect the
most modern E2E ASR performance? To what extent?

3. Methodology
To investigate how data characterised by different fea-
tures (data type) and varying amounts of training data
(training data time) can affect the fine-tuning of mod-
ern ASR models, our method includes a K-fold cross-
validation procedure [15]. This technique is used when
there is a limited amount of data and provides insight
into the model’s performance across different data sub-
sets. It consists of splitting the data into subsets (folds)
and training different models, as many as the number
of folds, each time considering a different combination
of folds as training (potentially validation) and test sets.
The approach follows these key steps:

• selection of data with different speech character-
istics;

• fold splitting according to training-specific crite-
ria, i.e., speech type and training fold size (min-
utes);

• selection of a pre-trained model for fine-tuning;
• evaluating model performance for the selected

datasets;
• fine-tuning the pre-trained model by training it

on the different folds;
• comparison of the performance of the fine-tuned

models;
• Word Error Rate - acoustic features correlation

analysis.

3.1. Data
Given the methodological focus of this study, we decided
to work with a well-known, restricted dataset to gain
clearer insights into the effectiveness of the method and
the findings. Hence, we selected data from a corpus
that was the object of previous phonetic studies [16, 17],
namely the CHROME corpus [18]. The corpus comprises
approximately 10 hours of speech produced by three fe-
male expert museum guides (G) leading visits at San Mar-
tino Charterhouse (in Naples). It consists of Neapolitan
Italian, informative semi-monologic, semi-spontaneous
speech characterised by a high degree of discourse plan-
ning and an asymmetrical relationship between the inter-
locutors. The three speakers show idiosyncratic speech



Table 1
Datasets duration, tokens, speech rate (SR) values.

dataset duration tokens SR m utterance
duration (sd)

m utterance
tokens (sd)

G01 192’ 26” 27881 2,41 3,72 (2,76) 8,97 (7,23)
G02 216’ 14” 39145 3,02 4,30 (2,50) 12,98 (8,08)
G03 181’ 56” 29341 2,68 4,62 (3,31) 12,43 (9,04)

styles [19]. In particular, they use different speech rates
and different “hesitation strategies”. G01 produces ap-
proximately 159 words per minute and seems to privi-
lege an “on the fly” production, using several non-lexical
fillers (eeh, ehm) and prolongations to cover speech plan-
ning time; G02 shows a higher speech rate, producing
about 174 words per minute, where utterances are juxta-
posed to each other as she tends to avoid silent pauses
altogether, avoid prolongations and non-lexical fillers,
and prefer lexical fillers instead; G03 adopts a more con-
trolled, “rhetorical” style, with a lower speech rate of
about 146 words per minute and mainly using lexical
fillers and silent pauses.

3.2. Data Preparation
Using the text annotation in TextGrid format [20], the
dataset was split in Inter-Pausal Units based on pauses
longer than 250 ms. This resulted in utterances with
a mean duration of 4,81 seconds (standard deviation =
2,88, max length = 30 ms). The text was normalised by
removing special characters, but leaving annotation of
segmental phenomena such as fillers (eeh, ehm, mh) and
prolongations (e.g., laaa). The final considered dataset
consists of slightly more than 3h and 27881 tokens for
G01, about 3h and a half and 39145 tokens for G02, and
about 3 h and 29341 tokens for G03. G02 shows a higher
speech rate than both G01 and G02. See Table 1 for total
duration, tokens and speech rate (SR), and mean (m) and
standard deviation (sd) of utterance duration and tokens.

3.3. Modelling
Selecting an appropriate pre-trained model is a criti-
cal decision that influences the success of subsequent
downstream tasks. While many high-performing models
are available, such as Whisper or Phi-4, our selection
was guided by several practical requirements: language-
specific support for Italian, computational efficiency, and
public availability to ensure experimental reproducibil-
ity and democratic access. Accordingly, we chose the
FastConformer model pre-trained on Italian by Nvidia
[21]. The FastConformer is an efficient variant of the
Conformer architecture, designed to significantly reduce
the computational cost and latency of the standard Con-
former model while maintaining high accuracy. This

Figure 1: K-fold Cross-Validation Procedure.

makes it particularly suitable for real-time speech recog-
nition tasks. Furthermore, the architecture is highly scal-
able, and indeed, FastConformer is at the core of top-
performing Nvidia ASR systems like Canary and Para-
keet.

The Group K-fold is a variation of k-fold cross-
validation intended for scenarios where the data has a pre-
defined group structure. The key constraint is to ensure
that the same group is not represented within the same
splits, namely training, validation and test sets. In our
case, samples from the same speaker will be grouped in
the same split. This method prevents data leakage by en-
suring that the model generalises to new, unseen groups,
not just new samples from existing groups. The corpus is
split into three folds, one per speaker and idiosyncratic
speech style (data set type), and these were further split
into five sub-folds of different sizes (split size), resulting
in 15 different fold combinations described in Figure 1.

3.4. Evaluation and correlation analysis
The model performance across the different folds was
evaluated considering the Word Error Rate (WER) com-
puted at the utterance level. Model comparison was con-
ducted based on WER mean and distribution values per
fold to observe which model performed better across the
considered folds.

Then, correlation analysis between data character-



Table 2
Utterance count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%) of WER per set
and fold (train data sets*train time).

train set type train set size validation set test set N wer sd se ci

- - - G01 3106 0.514 0.318 0.005 0.011
- - - G02 3014 0.386 0.256 0.004 0.009
- - - G03 2359 0.398 0.259 0.005 0.010

G01 15 G02 G03 2359 0.305 0.274 0.005 0.011
G01 30 G02 G03 2359 0.182 0.236 0.004 0.009
G01 60 G02 G03 2359 0.151 0.220 0.004 0.008
G01 120 G02 G03 2359 0.143 0.203 0.004 0.008
G01 all G02 G03 2359 0.136 0.204 0.004 0.008
G02 15 G03 G01 3106 0.416 0.342 0.006 0.012
G02 30 G03 G01 3109 0.291 0.330 0.005 0.011
G02 60 G03 G01 3109 0.233 0.318 0.005 0.011
G02 120 G03 G01 3109 0.205 0.299 0.005 0.010
G02 all G03 G01 3109 0.210 0.304 0.005 0.010
G03 15 G01 G02 3014 0.243 0.261 0.004 0.009
G03 30 G01 G02 3014 0.179 0.257 0.004 0.009
G03 60 G01 G02 3014 0.139 0.255 0.004 0.009
G03 120 G01 G02 3014 0.125 0.226 0.004 0.008
G03 all G01 G02 3014 0.118 0.215 0.003 0.007

istics and WER was performed to examine the influ-
ence of acoustic features on the performance of differ-
ent time folds. Feature values were automatically ex-
tracted for each utterance employing the OpenSmile
toolkit [22]. The Geneva Minimalistic Acoustic Parameter
Set (eGeMAPSv02) [23], i.e., a restricted set of features
based on interdisciplinary evidence and theoretical signif-
icance, was selected as the feature set. The study focuses,
in particular, on the features that could be considered as
the most relevant, as reported in previous literature [7]
and inspection of the data.

4. Results

4.1. Model performance and comparison
The analysis starts by evaluating the model’s baseline
performance on the defined datasets before applying k-
fold cross-validation to establish a reference for compari-
son. The selected model performs less for the G01 dataset
(mWER = 0.51, sd = 0.32) than for the G03 dataset (mWER
= 0.40, sd = 0.26) and the G02 dataset (mWER = 0.39, sd
= 0.26), see the first three rows of Table 2. The overall
mean WER across different data type sets is 0,43 (sd =
0.26).

Then, we observe the model’s performance on each
fold. Figure 2 and Table 2 show the mean WERs per
train set data type and size. The mean WERs across
the data type sets (purple line) reach lower values than
the baseline (red dashed line) already after fine-tuning
with the smallest 15’ sets (mWER_15 = 0.32, mWER_30 =

Figure 2: Word Error Rate (WER) per training time grouped
by training data. The dashed red line indicates the mean
baseline WER.

0.22, mWER_60 = 0.18, mWER_120 = 0.16, mWER_all =
0.16). The values decrease as the size of the training set
increases. However, the magnitude of the WER difference
between subsequent size groups progressively diminishes
until it becomes trivial between the models trained on 60’
speech and those trained on the entire datasets (about 3h).
We then consider the mean WER values grouped by train
set data type. Although models trained on G01, as well
as G02 and G03 data, perform better than the baseline,
we observe that the models trained on G02 data perform
worse than the others, with WERs closer to the overall
baseline. In particular, the models trained on G02 are
tested on G03 and are closer to the G03 baseline (mWER =



Figure 3: Correlation of feature values with WER per train set data type_size folds.

0.4). Instead, the models trained on G03 and tested on G01
show a larger difference with the G01 baseline (mWER =
0.51) than the difference between models trained on G01
and tested on G02 and the G02 baseline (mWER = 0.39).

Considering both the contribution of the train set data
type and the size to the model performance improvement,
the optimal fold is G03_120.

4.2. Features Correlation with WER
To explore how different datasets affect model perfor-
mance, we observe which features correlate with the
trained models. The heatmap in Figure 4.2 shows the
Pearson coefficients resulting from the correlation be-
tween a selection of relevant acoustic features and the
WER for each model. The colour of each tile represents
the direction of the correlation, while its intensity in-
dicates the strength of the correlation. Red denotes a
positive correlation, meaning higher feature values corre-
spond to higher WER, whereas blue indicates a negative
correlation, where higher feature values align with lower
WER. White represents a weak or no correlation.

We observe negative correlations between the WER
values and both the utterance duration and tokens. The
correlation becomes weaker, but still noticeable, with
increasing train set data size, and the same trend is ob-
served for each dataset. An opposite trend is observed

for the speech rate values, the latter correlate with WERs
positively and increasingly along the train set size. How-
ever, this trend is considerably stronger for the models
trained on data from the G01 dataset (and tested on G02
dataset). Weaker correlations are observed for the mean
values of F0, especially for the G02 and G03 models, with
the strength slightly increasing with the size of the train-
ing set. Rather constantly weak correlations can be ob-
served for median loudness, MFCC4 in voiced regions and
WER values. Still rather constant but slightly stronger is
the correlation between loudness peaks per second and
WERs for the models trained on the G02 dataset.

5. Discussion and Conclusions
This study contributes to investigations on how the per-
formance of modern E2E ASR models is affected by the
type and amount of speech data used for training and
aims to define a way to identify an optimal combination
of type and amount of speech data. The investigation is
supported by observation of how different speech acous-
tic features contribute to the model performance.

The Fast-Conformer WER on the selected semi-
monologic, semi-sponetanous data presents overall lower
values than the evaluation provided by a previous study
on Italian monologic data, i.e., 12.8 WER [6]. More



specifically, lower recognition scores are reported for
G01 speech, characterised by a more spontaneous speech
style, including more features such as non-lexical fillers
and prolongations than the other speakers, which is in
line with the literature [12, 13].

The cross-fold evaluation shows that the models’ per-
formance improves with train set size; however, the mag-
nitude of the improvement gradually decreases until be-
coming trivial between models trained on 120 minutes
and about 3 hours of speech. This finding supports the
claim that simply increasing the size of the training set
is not always beneficial and not always enough to guar-
antee better performance. Although this trend stands
across all datasets, variation can still be observed.

The models trained on speech produced by the second
guide (G02) perform worse than the others, with recog-
nition scores closer to the overall baseline. In particular,
the models trained on G02 speech, that is characterised
by higher speech rate and fewer pauses, are tested on
G03 speech and achieve smaller improvement over the
G03 baseline as compared to the models trained on G03
speech, showing a more controlled speech style, and G01
speech, defined by a more spontaneous speech style. It
is particularly worth noticing that the models trained on
G03 and tested on G01 show the best recognition scores
over all size folds, thus overcoming the G01 baseline dis-
advantage. This seems to indicate that some speech data
are more informative than others and may even over-
come recognition issues related to more spontaneous
and conversational speech styles; however, studies in
this direction should be further developed.

Considering both the contribution of the train set data
type and size to the model performance improvement,
the dataset that optimises the combination of data type
and amount is the one containing 120 minutes, i.e., two-
thirds of the available dataset, of the more controlled, but
still spontaneous, speech produced by G03 (RQ1).

In line with the literature [7], correlations between
recognition scores and utterance durational features
emerge. More specifically, higher length values (in terms
of utterance tokens and duration) correlate with lower
recognition errors, which indicates that providing a wider
context enhances recognition. Conversely, higher speech
rates hinder recognition. However, this effect is more
or less mitigated according to the speech type in the
training set (RQ2). This finding, as well as the constant
and weak correlations observed for the other acoustic fea-
tures, deserves further attention and needs to be explored
in future works.

Overall, these findings show that using both more
spontaneous speech and more controlled speech can be
beneficial to fine-tune a pre-trained model, provided that
the speech rate is not too high. More detailed analyses
will be performed considering the values of the acoustic
characteristics and their variation to gain deeper insight.

This study provides evidence corroborating the idea
that less but more informative data can be used to fine-
tune pre-trained models, which could be useful for fine-
tuning in low-resource scenarios. Furthermore, the use
of the Fastconformer highlights the value of architectures
that offer a favorable trade-off between performance and
computational resources. These models present a vi-
able alternative for deployment on resource-constrained,
privacy-oriented devices. At the same time, they can
be quickly adapted to different low-resourced contexts,
standing in practical contrast to larger-scale yet resource-
demanding models.

In this study, we prioritised methodological soundness
and understanding over immediate broad applicability.
We selected a known dataset restricted in size and speaker
diversity to enhance the interpretability of the results,
verify the method’s core effectiveness and establish a
solid foundation for scaling to larger, more diverse cor-
pora. Future work will be devoted to further exploring
this direction by considering larger datasets that max-
imise differences in acoustic-phonetic features that were
observed to be relevant for the modelling.
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