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Abstract

The ability to recognize and interpret causal relations is fundamental for building robust intelligent systems. Recent research
has focused on developing benchmarks and tasks to evaluate the inferential and causal reasoning capabilities of LLMs, such
as the Pairwise Causal Discovery (PCD) task. However, most of these resources are limited to English. In this paper, we
present ExpliCITA, a translation of the English ExpliCa dataset [1], which is the first publicly available dataset for joint
temporal-causal reasoning in Italian, enabling evaluation of LLMs on Italian PCD. We conduct an extensive empirical study
across 20 Italian and multilingual models of varying sizes and training strategies, combining a perplexity-based evaluation of
causal reasoning competence with multiple-choice prompting tasks in both zero-shot and few-shot settings. Our results show
that all tested models, including the GPT family, struggle with the ExpliCITA PCD task, more so than with the original English
ExpliCa, in both evaluation scenarios. Moreover, native Italian models do not outperform fine-tuned multilingual alternatives.
Consistent with prior findings, we observe that the linguistic competence of models, measured using perplexity-based metrics,
is higher than their respective performances, measured via accuracy on prompting results; however, this gap tends to narrow
with increasing model size. Finally, a per-class performance analysis reveals that models handle causal relations relatively

better than temporal ones.
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1. Introduction

Recognizing causal relations is a core human cognitive
skill. Causal understanding is in fact fundamental to
intelligent reasoning [2]. Thus, a strong Al system should
be capable of performing causal reasoning.

The past few years have in fact seen a vigorous debate
about the extent to which large language models (LLMs)
are actually capable of genuine inference, beyond mere
pattern matching [3, 4, 5]. Among the inferences a model
should be able to perform lies the causal one. Therefore,
several benchmarks targeting causality have emerged
recently [6, 7, 8].

A popular evaluation paradigm for causal reasoning is
Pairwise Causal Discovery (PCD), which aims to detect
pairwise causal relations from observational data. In a
PCD task a model must determine if a causal link exists
between two events, along with the direction of causality
[9, 10]. A common way to frame this task is to give
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two sentences as input to the model (i.e., “Martina has
less chances of getting the flu” and “Martina has been
vaccinated against the flu”), and to ask the model if the
first sentence is a consequence of the first with a yes/no
question (in this case, groundtruth: “yes”) [1, 10].

Temporality plays a crucial role in the context of causal-
ity, as every causal relation inherently implies a temporal
one: If an event A causes an event B, A must necessar-
ily occur (or begin to occur) before B. Conversely, the
presence of a temporal relation between two events does
not necessarily imply a causal link. For this reason, we
extended the PCD task to include the identification of
temporal relations, to explicitly disentangle the interplay
between causality and temporal sequencing.

To address this issue, in previous works we introduced
the ExpliCa (Explicit Causality) benchmark [1], offering
a more controlled experimental setup that jointly ad-
dresses temporal and causal reasoning. ExpliCa presents
pairs of sentences, each describing a distinct event, with-
out any surface-level linguistic cues for temporal and
causal relation, except for a connective that explicitly en-
codes both the type of relation (i.e., causal and temporal),
and the order between the two events. For example, in [1],
we asked the models to choose which of four connectives
(so, because, then, and after) best represents the relation
between the sentences “Martina has less chances of get-
ting the flu” and “Martina has been vaccinated against the
flu” (in this case, groundtruth: “because”.)

Despite these progresses, resources for joint
temporal-causal reasoning are still lacking, especially
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in languages other than English. At the same time,
a rich ecosystem of LLMs pre-trained on, or adapted
to, languages other than English, including Italian, is
rapidly emerging.

To partially fill this gap, we introduce ExpliCITA
(Explicit Causality in ITAlian). ExpliCITA is an Ital-
ian adaptation of ExpliCa and we believe it is the first
benchmark dedicated to joint temporal and causal rea-
soning in Italian.

We also leverage the evaluation framework for ExpliCa
to conduct the first large-scale evaluation of Italian lan-
guage models on causal reasoning. The framework allows
us to test both competence (what the model “knows”
about the probability distribution of linguistic events)
via perplexity, and performance (how it applies that
“knowledge”) via prompting [11, 12]. Specifically, the
prompting task is formulated as a multiple-choice task,
where models have to select the appropriate connective
in a cloze-style prompt. We explore different generation
settings: greedy decoding and the Outlines framework
[13], under both zero- and few-shot regimes. Our evalua-
tion includes a total 20 models across a spectrum of sev-
eral sizes and training approaches: i.) seven native Italian
models trained from scratch, ii.) four multilingual models
fine-tuned on Italian, iii.) three open-weights multilin-
gual models, iv.) an open-weight reasoning-specialized
LLM, and v.) five commercial systems from the GPT
family.

We make both the data and code available on GitHub
to replicate our experiments.’

Our contribution is twofold:

« we present ExpliCITA, the first dataset for joint
temporal-causal reasoning in Italian;

« we deliver an extensive empirical study across
20 Italian and multilingual models, following a
robust evaluation framework combining an evalu-
ation via perplexity with multiple-choice prompt-
ing in several settings. This allows us to highlight
strengths, weaknesses, and performance varia-
tion across model types and sizes.

The remainder of the paper is organized as follows:
Section 2 reviews related work; Section 3 introduces the
ExpliCITA dataset; Section 4 details the experimental
setup; and Section 5 presents and discusses the results.

2. Related Works

The study of causality and its linguistic expressions has
recently regained momentum, particularly in the con-
text of evaluating the reasoning capabilities of large lan-
guage models (LLMs). In this domain, many evaluation
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datasets focus on presenting a contextual scenario to test
causal inference [14, 6, 15, 16, 17, 18], while others chal-
lenge NLP systems to identify causal relations directly
on the text [19, 16, 20], also along with temporal ones
[21, 22, 23, 24, 25]. ExpliCITA stems from ExpliCa [1], a
dataset developed to evaluate the ability of LLMs to detect
explicit causal and temporal relations between events. In
ExpliCa, relations are annotated via crowdsourcing and
are signaled exclusively through a connective linking a
pair of sentences, carefully stripped of any additional
contextual or lexical cues. This controlled setup mini-
mizes the influence of surrounding context and enables
a more focused assessment of the model’s reasoning on
explicit relational cues.

Due to its design, ExpliCITA shares its structure with
other datasets that frame implicit causal relations in a
sentence-pair format, where each sentence expresses an
individual event. Notable among these are the COPA
dataset [26], the e-CARE dataset [27], and tasks from the
BIG-Bench benchmark [28], which also test models on
explicit causal reasoning. COPA and e-CARE were both
incorporated into the original ExpliCa dataset.

While resources for English are abundant, the availabil-
ity of non-English datasets for causal reasoning remains
limited. Nevertheless, contributions exist for Spanish
[29], German [30], Arabic [31], and Persian [32]. Among
multilingual efforts, MECI [20] stands out as a resource
where causal relations are annotated across several lan-
guage editions of Wikipedia.

Causal reasoning, and related tasks such as Pairwise
Causal Discovery (PCD), belongs to a broader class of
inference-based tasks in natural language understanding.
These tasks aim to evaluate a model’s ability to derive
implicit information from textual input, whether through
logical entailment, causal attribution, or commonsense
associations. Within this wider inference landscape, Nat-
ural Language Inference (NLI) benchmarks like XNLI
[33] test models on cross-lingual entailment across 15
languages, while datasets such as X-CSQA [34] focus
on cross-lingual commonsense reasoning in a question-
answering format.

In the Italian context[35], the first dataset for textual
entailment was introduced during the EVALITA 2009
evaluation campaign, comprising 800 sentence pairs de-
rived from Wikipedia revision histories [36]. More re-
cently, the HellaSwag-it dataset, an adaptation of the
original HellaSwag dataset [37], was developed to test
commonsense inference by asking models to choose the
most plausible ending to a given scenario. Additionally,
for causal reasoning, the COPA dataset was translated
into Italian (and other languages) as part of the XCOPA
project [38]. Both XCOPA-it and HellaSwag-it were in-
tegrated into ItaEval [39], a benchmark for evaluating
LLMs on Italian commonsense and factual reasoning.
ItaEval was featured in the 2024 Italian NLP evaluation
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campaign, CALAMITA [40], which included a wide range
of datasets to test commonsense and factual knowledge.
Among them, Gita [41] is particularly relevant here: it
focuses on physical commonsense in Italian, present-
ing pairs of plausible and implausible stories composed
of sentence sequences. To the best of our knowledge,
ExpliCITA is the first dataset specifically dedicated to
evaluating explicit causal and temporal reasoning in a
controlled setting for the Italian language.

3. The ExpliCITA Dataset

The ExpliCITA Dataset is a direct translation of ExpliCa
[1]. The original dataset was designed as a benchmark
for evaluating explicit causal reasoning in LLMs, with a
particular focus on distinguishing causal relations from
temporal ones, using the PCD task. A thorough descrip-
tion of the dataset and its properties is reported in [1]. In
the following, we highlight some of its key aspects.

Approximately a third of the items in ExpliCa are based
on other existing datasets [42, 28, 27]. The remaining two
thirds are manually crafted. In total, 600 items are in the
dataset. Each item of the dataset comprises a sentence
pair S1 and S2, where each sentence describes an event.

The dataset has two key dimensions, namely the type
of relation and the order of presentation. As for the type of
relation, the items were selected by authors to be equally
divided into three main subsets: i.) CAUSAL, where the
relationship is causal, and possibly of temporal prece-
dence; ii.) TEMPORAL, where the relation is only of tem-
poral precedence, without causality; iii.) UNRELATED,
that includes thematically related sentences that are nei-
ther causally nor temporally related. Potential biases in
lexical elements are controlled for using Mutual Informa-
tion between lexical elements of the sentence pairs. This
is done to avoid having very different lexemes in the UN-
RELATED group with respect to the other groups. The
differences in the association strengths between lexemes
in the three groups are not statistically significant.

As for the order of presentation, it can be either
ICONIC (in short form Ic), if the sequence of events ex-
pressed in the two sentences matches their chronological
and/or logical-causal order (e.g., “S1 then S2”), or ANTI-
ICONIC (in short form, A-Ic), if the sequence of events
expressed in the two sentences is inverted compared
to their chronological and/or logical-causal order (e.g.,
the effect is mentioned before the cause: “S2 because
S17). Note that, for each sentence pair, the dataset in-
cludes both the Iconic and Anti-Iconic order for a total
of 600 x 2 = 1,200 items.

The type of relation and the order of presentation are
expressed via one out of four connectives, that act as lin-
guistic cues to explicitly signal the nature of the relation-
ship. In the English version of the dataset, the connectives

are: so (Causal, Iconic), because (Causal, Anti-Iconic), then
(Temporal, Iconic), and after (Temporal, Anti-Iconic).

A defining feature of the dataset is that the connective
is the sole linguistic cue indicating the semantic rela-
tion between sentence pairs. To ensure a controlled and
challenging evaluation of causal reasoning, the dataset
excludes any additional explicit marker, such as causal
verbs, and removes anaphoric references by avoiding
personal pronouns. This design compels models to rely
exclusively on event semantics and the connective itself,
without support from broader contextual cues.

The dataset was then annotated via crowdsourcing by
English native speakers. Specifically, annotators were
asked to rate the acceptability of a sentence pair linked by
one of the connectives. Each sentence pair, in both orders,
with all possible connectives (600 x 2 x 4 = 4800 total
items) was rated by 15 participants. For each sentence
pair in both orders of presentation, the connective with
the highest acceptability rating was considered as the
ground truth. Note that the ground truth based on human
ratings do not overlap perfectly with the original distinc-
tion in CAUSAL, TEMPORAL, and UNRELATED groups
made by authors when building the sentence pairs.

To build ExpliCITA from ExpliCa, we followed a semi-
automatic translation procedure. First, we used ChatGPT
via the web interface” to translate each sentence from
the 600 pairs independently. Then, each sentence was
manually evaluated to address errors in the automatic
translation. Errors ranged from mistakes in gender as-
signment (e.g., “Luca é stata [...]”) to completely missing
idiomatic expressions (e.g., “Marco ran the red light”,
translated as “Marco ha corso la luce rossa” instead of
“Marco é passato col rosso”). A significant number of trans-
lations needed manual verification. For ExpliCITA, we
used the following four connectives:

Quindi - Indicates a causal relation in the iconic order.
The event in S1 causes the event in S2.

Perché - Indicates a causal relation in the anti-iconic
order. The event in S1 is caused by the event in S2.

E poi - Indicates a temporal relation in the iconic order.
The event in S1 temporally precedes the event in S2.

Dopo che - Indicates a temporal relation in the anti-
iconic order. The event in S1 follows the event in S2.

The choice of multi-token expression for the temporal
connectives is due to the fact that no sufficiently frequent
single word in Italian conveys the proper meaning.

ExpliCITA includes each sentence pair in both orders
of presentation. Thus, the number of data points is 600 x
2 =1, 200. We consider as our ground truth the results
of the crowdsourcing experiment for ExpliCa [1]. In
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w CAUSAL TEMPORAL UNRELATED | Total
Connective

Quindi (Caus., Ic) 181 15 66 262
Perché (Caus., A-Ic) 183 33 72 288
E poi (Temp., Ic) 17 207 180 404
Dopo che (Temp., A-lc) 19 145 82 246
Table 1

Distribution of connectives across groups in ExpliCITA.

Table 1 we report statistics on the dataset. We consider
both the original division in the three groups (CAUSAL,
TEMPORAL, UNRELATED) and the numerosity of each
connective, both in the three groups and globally.

4. Experimental Setting

The goal of our experiments is to test LLMs on the PCD
task of the ExpliCITA dataset from two perspectives. On
the one hand, we want to assess the linguistic compe-
tence of the model: the fact that it encodes some lin-
guistic knowledge about causal and temporal relations.
We do so by leveraging a perplexity-based evaluation.
On the other hand, we want to address the actual per-
formance of the model on the dataset. We do so via a
prompt-based evaluation in which the model has to
solve our PCD task, by identifying the correct connective
for a sentence pair. Our main goal is to evaluate Italian
LLMs on Italian data. In addition to native Italian LLMs,
we also consider other model classes. Specifically, we ac-
count for i.) Italian fine-tuned models, i.e. open-weights
models fine-tuned on Italian, ii.) open-weights multilin-
gual models, iii.) open-weights reasoning models, and iv.)
closed commercial models. All tested models are listed
in Section 4.1.

Perplexity-Based Evaluation. This experiment is an
exact replica of the one conducted in [1]. For each sen-
tence pair in the dataset (i.e., in both orders of presen-
tation), we derive one sentence for each connective, in
the form “s1 {{ connective }} S2”. We obtain
1,200 x 4 = 4,800 sentences in total. For each of them,
we compute a model’s perplexity (PPL) over the whole
sentence. We then rank the four sentences based on PPL,
and consider the one with the lowest value as the “model
connective choice”. Finally, we compute the accuracy of
the model choices against the ground truth. We call this
metric Accuracy on Perplexity Score (APS).

Prompt-Based Evaluation. For the prompt-based
evaluation, we asked the models to identify the correct
connective to use between S1 and S2. We chose to focus
on a standard multiple-choice task, as it is one of the most
widely used formats for evaluating LLMs, and replicates
one of the prompting experiments in [1]. In the task, the

model is presented with S1 and S2 and a list of choices,
each representing a connective. The task is to provide
the correct choice. We experiment in both zero-shot and
few-shot scenarios. For the few-shot, the models saw one
example for each connective, for a total of four examples.
To avoid biases in the choices, both the order of options
to choose from and the position of the correct answer
is randomized. Note however that all models saw the
same exact prompt for any item in the dataset. We use
accuracy as our main metric. To distinguish from APS,
we refer to values obtained via prompting as Accuracy
on Prompt Execution (APX).

The template for the prompt is shown in Appendix A.
We used the Jinja template syntax.” The prompt is not a
direct translation but it is heavily inspired to the one used
in [1]. First, we provide the models with the description
and format of the task; for the few-shot scenario, we
provide the examples; then, we give clear instructions
for how to complete the task; finally, we describe the
task. Since we use both pre-trained only and instruction
fine-tuned models, we used a template that would enable
also pre-trained only models to answer. Note that we did
not implement specific templating strategies (e.g., chat
formatting, special tokens, etc.) for any model, and we
fed all the models with exactly the same prompt.

The only exception was GPT, which was prompted
using the chat format, as required by the model’s APL
However, the content of the prompt was the same as the
one used for all other models, without the addition of any
custom system messages, special tokens, or instruction-
specific formatting.

We used a markdown-like syntax to highlight the sec-
tions of the prompt. We acknowledge that not formatting
the prompt for each model may hinder performances in
some cases. However, we argue that this ensure a more
fair evaluation. The only exception was made for the
reasoning model, for which we also include the <think>
token at the end of the prompt, to ensure that the Chain-
of-thought is started.

We used a greedy decoding strategy for all experi-
ments, that is we always sample the next most likely
token at each generation step. We let each model gener-
ate a maximum of 20 tokens in their response. For the
reasoning model, we let it generate a maximum of 10,000
tokens. All models, with the exception of GPT variants,
where used in their HuggingFace implementation.’

A notable issue with unconstrained text generation is
that less performing models may yield text that do not
conform to the standard asked for in the prompt. This
remains true also for cases, like ours, where the expected
answer can be the direct continuation of the prompt,
rather than the answer to a question or the turn in a

*https://jinja.palletsprojects.com
*huggingface.co


https://jinja.palletsprojects.com
huggingface.co

conversation. To alleviate this issue, we proceeded in
two ways. First, we implemented a post-processing strat-
egy based on a set of regular expressions to parse each
model response and extract one answer. The regexes
were designed to extract one and only one option from
the generated text. In cases where multiple answers or no
answer were detected, it was counted as a mistake for the
model. In Section 5, we report the results of the model af-
ter this post-processing. Some models consistently failed
to provide appropriate answers in this setting.

Second, we employed Outlines [13],” a Python library
built to provide structured text generation with LLMs
(e.g., with type constraints, following regular expressions,
or providing json-formatted outputs). In the case of mul-
tiple choices, it uses masking on the output probabilities
to restrict the model outputs to a set of valid completions
[13]. In our case, the possible completions are the “A”,
“B”, “C”, and “D” options for the tasks. This approach
has become quite popular in the literature and has been
adopted in several recent studies on generative LLMs
[12]. Note that Outlines was not used for the GPT vari-
ants and one of the open-weights tested models, namely
Gemma3. In fact, all GPT models consistently yielded
properly formatted outputs, making an additional evalu-
ation redundant (recall that the next-token prediction is
performed in a greedy fashion) and economically costly.
Moreover, a known bug in the current Outlines and Hug-
gingFace implementations prevents all Gemma3 models
to be run through Outlines at this stage.

4.1. Tested Models

We chose to experiment on a variety of models and model
classes, to gain a broader and clearer picture of the prob-
lem. Our main goal was to evaluate native Italian LLMs
on the PCD task. Thus, we considered the following
native Italian model families/variants:

Minerva [43]. We considered all model sizes of the
Minerva family (from 350M to 7B), including both the
Instruction fine-tuned and pre-trained only ones.

Velvet [44]. We experimented with both available mod-
els, namely Velvet-2B and Velvet-14B.

We highlight that we were not able to ran experiments
on the Italia-9B model due to issues with its loading via
the HuggingFace library.

We also chose to experiment with non-native Italian
models for a clear and fair comparison. These can be
distinguished into four classes:

Italian Fine-Tuned models: This class includes
LLaMAntino-2-chat-7b-hf-UltraChat-ITA [45],
LLaMAntino-3-ANITA-8B-Inst-DPO-ITA [46] and

Shttps://github.com/dottxt-ai/outlines

cerbero-7b variants [47]. They are respectively fine
tuned versions of LLaMA-2, LLaMA-3 and Mistral.

Open LLMs: We also evaluated the performances of
strong contenders in the Open LLM space. To do so, we
selected Meta’s LLaMA-3.1-8B [48] and two versions of
Google’s Gemma3 [49], namely the 4B and 12B ones.

Reasoning LLMs: We also tested one reasoning model,
namely DeepSeek-R1-Distill-Llama-8B [50], a dis-
tilled version of DeepSeek-R1 using LLaMA-3.1-8B. This
allows us to explore how reasoning impact performances
on our PCD task.

Commercial models: Finally, we tested the GPT-
4x family as representative of commercial closed-
source models. We evaluated both gpt-40 and
gpt-4o0-mini [51], and all the GPT-4.1 variants
(gpt-4.1, gpt-4.1-mini, and gpt-4.1-nano) [52].

Depending on its size, each model required a time
between 0.5 and 1 GPU hours to complete its run, that
includes both the zero-shot and few-shot experiments,
each consisting of: i.) generation with greedy decoding;
ii.) generation with Outlines; and iii.) PPL scores compu-
tation. The DeepSeek-R1-Distill-Llama-8B model
required around 10 GPU hours in total, due to its much
higher demand for test-time compute. Experiments with
the GPT-4x family were conducted using the official Ope-
nAI Batch APL° The code for replicating the experiments
is available on GitHub.

5. Results and Discussion

In this Section we present and discuss the results. We
first look at the overall results based on Accuracy of mod-
els on the PCD task of ExpliCITA, in terms of both i.)
linguistic competence with APS, and ii.) performance
with APX in zero- and few- shot experiments, with and
without Outlines. Then, we present additional results by
considering two aspects. On the one hand, we look at the
distribution of answers for each model, to highlight pos-
sible biases and failures in providing an answer. On the
other hand, we look at per-class performances, to under-
stand whether the tested LLMs show biases in modelling
specific aspects of temporal and causal reasoning.

5.1. Overall Results

Our main findings for the evaluation of LLMs on Ex-
pliCITA are summarised in Figure 1. The Figure shows
the Accuracy of all tested models, in all scenarios. We
divide the plot by model family, and sort each family by
the model size.

Chttps://platform.openai.com/docs/guides/batch
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Figure 1: APS and APX scores for LLMs on ExpliCITA, grouped by model family and ordered by size.

The results are in line with the experiments reported
for ExpliCa [1]. We highlight several interesting aspects
in the following.

Overall performance. As for the raw performances,
all models except the GPT-4x family show rather poor
or at least somewhat brittle performances. The only
models capable of approaching GPT-level performances
are DeepSeek-R1 and Gemma3-12B. However, this is
achieved either with the inclusion of reasoning for
DeepSeek, or only in a specific setting for Gemma.

Zero- vs Few-Shot.  As for the difference in zero-shot
and few-shot settings, the GPT-4x family is again the
only one where there is a clear and consistent trend,
in this case in favour of the few-shot setting. In other
cases, the few-shot examples are not always beneficial:
for some models (e.g., Gemma3-12B, LLaMAntino-2 and
Minerva-3B) it appears to be detrimental, while for other
it is ineffective. However, for Minerva-7B we observe
that while for the pre-trained variant the examples are
detrimental, this is not true for the instruction-tuned one.
This is possibly due to the instruction-tuning dataset of
the model.

Impact of Outlines. It appears to be beneficial mostly
for cases where zero- or few-shot performances are quite

low (e.g., below 0.1). In other cases, the use of Outlines
seems less influential. Nevertheless, the same accuracy
may be obtained from a significantly different distribu-
tion of answers, as will be discussed in the following
Sections.

Model sizes. As shown in [1], we observe that the size
of the model is relevant for its downstream performances.
In the open-weights model classes, the two best perform-
ing models are Gemma3 and Velvet, respectively in the
12B and 14B variants. Both also display above average
APS scores. However, it is also interesting to note that
while Gemma3-4B was not able to solve the task at all,
the 2B variant of Velvet was consistent in its performance,
which closely match those of some larger models.

Competence vs. Performance. It is important to no-
tice that APS is always better than APX, with the sole
exception of the Gemma-3-12B model. This further cor-
roborates some of the findings in [1]: while models’ inter-
nal representations and probability distribution encode,
at least to some extent, knowledge about causal and tem-
poral relations, this knowledge is not fully accessed via
prompting. This is also in line with other research [11].
Moreover, it was shown in [1] that the gap between APS
and APX shrinks with the size of the model. Given the
wide array of tested open-weights model, we can further



corroborate this hypothesis by looking at Figure 2. We
can clearly see that the rate of improvement in APX as
models grow in size (red trendline) is higher than their
respective rate of improvements in APS (blue trendline)
on the task.
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Figure 2: Difference between APS and APX across models of
varying sizes.

We also highlight the following relevant findings asso-
ciated to specific model classes:

Italian Models are weak; Native Italian pre-training
is not beneficial. Native Italian models do not show
relevant improvements with respect to fine-tuned alter-
natives, neither at the same size, nor at larger sizes. The
Velvet family appears to provide relatively solid results at
all scales; in contrast, smaller models in the Minerva fam-
ily appear to be less robust on ExpliCITA. The fine-tuned
Italian models display similar, if not better, performances
than native ones. This could lead us to question whether
it’s truly necessary to train LLMs from scratch on Italian
data. Results suggest that, albeit limited to this case study,
it is not.

GPTs struggle. On ExpliCa, the GPT model family dis-
played performances that couldn’t reach 0.8 Accuracy
[1]. Changing the language of the dataset and the prompt
highlight a stark contrast: the drop in performances for
the same model is around .20 points, and even newer
models cannot reach a 70% accuracy. Considering the
fact that the task has remained exactly the same, and that
GPT “speaks” fluent Italian, this may be indication that
current LLMs are still limited in terms of actual causal
reasoning, and still reliant on their internal probabilistic
representations of texts.

Test-time compute is beneficial. We observed that
the performances of the distilled DeepSeek-R1 drastically
improve when it is allowed to use its “reasoning” abilities.
This is particularly interesting, as it somewhat contrasts

with the expectation that the task not require particular
forms of reasoning, which may be instead required when
modelling phenomena such as implicit causal relations.
This issue will be further addressed in future works. We
also note that while answers were provided in Italian,
the chain-of-thought enclosed in the <think> tokens is
almost exclusively in English.

5.2. Additional Analyses

Besides evaluating the accuracy of models on ExpliCITA,
we also consider two other aspects that allow us to further
understand the behaviour of the tested models in our
setting.

Distribution of Answers. First, we explore how mod-
els actually answered to the multiple-choice task. The
distribution of answers with greedy decoding and with
outlines in the zero-shot setting is shown in Figure 3. We
leave out the visualization of the few-shot setting due to
space limitations, but they are very similar in nature.

Distribution of Model Answers
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Figure 3: Model answer distribution in zero-shot multiple-
choice tasks using greedy decoding and prompting via out-
lines.

We observe that some models consistently fail to pro-
vide an adequate answer, thus drastically lowering their
performances. For example, it is possible that when
ANITA actually answered it did so correctly, but it was
able to answer on a very small fraction of the questions.
Moreover, although we applied post-processing to the
model responses (see Sec. 4), we still observed persistent



failure modes, primarily due to the model’s inability to
follow the expected output format. Such behaviors can be
broadly described as faithful hallucinations caused by in-
structional inconsistency [53], in which the model’s out-
put is not properly aligned with the user’s request. These
failures often consisted in limitations in the number of
requested output tokens, which the models were unable
to respect, unintended rewriting of the input question,
or, more generally, a lack of adherence to the structure
and intent of the prompt.

We also observe that several models have a strong
preference for a specific answer, which is often either “A”
or “C”. This is in line with research on biases in multiple
choice tasks [54]. This is corroborated by the fact that,
even with Outlines, these models still tend to prefer a
specific answer over the others.

Fracision and Recall par Claes

Figure 4: Per-class Precision and Recall for each model in the
zero-shot setting.

Per-class Performances. Finally, Figure 4 shows the
Precision and Recall performances of each model, divided
by class. Again, we look at the zero-shot scenario and
leave out the few-shot one due to space limitations. By
looking at the plot, three main observations can be made.
First, the GPT-4x models are the most consistent across
classes, with only a few notable exceptions for the small-
est models. Second, we observe that some of the models
display a relatively strong bias towards a single or a pair
of answers. Finally, if we zoom out and look at the bigger
picture, we see that models have a slight preference to-
wards causal relationships. The less biased models are the
two biggest ones, namely gpt-4.1 and gpt-4o0. This may
further suggest that at smaller scales models rely more
on distributional properties of words (e.g., causal connec-
tives often imply a temporal relationship as well, but not
vice versa) and are more sensitive to frequency effects
linked to word combinations frequently encountered dur-
ing training. In Italian, in fact, causal connectives such as
“perché” or “quindi” are often used in syntactic construc-
tions where the premise is explicitly connected to the

consequence via one of these two connectives. The con-
struction “S1  connective S2” is therefore typical
for causal relationships.

In contrast, there is greater variability in how tem-
poral sequential relationships can be expressed in Ital-
ian. These can be conveyed through temporal conjunc-
tions such as “e poi” or “dopo che”, as well as through ad-
verbs and adverbial expressions such as “precedentemente”
(“previously”), “successivamente” (“subsequently”), or
“poco fa” (“a short while ago”). Equally frequent are cases
in which temporal relations are conveyed solely through
verb tense agreement between the two clauses, for in-
stance, through a past-present combination to express
anteriority between S1 and S2. Compared to causal rela-
tionships, the temporal dimension is thus more suscepti-
ble to variability, both in terms of the range of construc-
tions available to express the same temporal relation in
Italian, and in terms of the diversity of contexts in which
the same temporal adverb might occur.

Indeed, while causality pertains to a subset of verbs
and situational contexts, temporal information, whether
implicit or explicit, is present in all events expressed by
a verb. This variability affects the generalization capabil-
ities of the models, especially the smaller ones. In fact,
larger models seem better able to properly evaluate the
context and identify the correct relationship between
events.

6. Conclusions and Future Works

In this paper, we presented the ExpliCITA dataset, the
Italian translation of ExpliCa [1]. The dataset is designed
to evaluate explicit temporal and causal reasoning in
LLMs. We also replicated part of the experiments made
on ExpliCa with several LLMs, including i.) natively-
trained Italian models, ii.) multilingual models fine-tuned
on Italian, iii.) multilingual open-weights models, iv.) a
multilingual reasoning open open-weights model, and v.)
closed-weights commercial models from OpenAL

Our findings can be summarized as follows. First, con-
sistently with [1], we observe two key facts. On the one
hand, all tested models, including GPT, struggle to solve
the task, in Italian more so than in English, both in the
zero- and few-shot setting. We also see that this strug-
gle is also due to their inability to reliably provide the
answers required by the task, which is only partially al-
leviated by using the decoding method of Outlines. On
the other hand, we observe that linguistic competence
of models, measured with the APS, is consistently better
than the respective performance when prompted. How-
ever, we see that this gap between APS and prompted
accuracy tends to reduce with the model size.

Second, we observe that native Italian models are no
better than the fine-tuned alternatives when it comes to



the ExpliCITA PCD task.

Third, we see that leveraging test-time compute ap-
pears to be beneficial for the task, possibly suggesting
that the reasoning training is important to boost the
ability to recognize semantic relations between events,
even when these are linguistically expressed. We plan
to conduct a more systematic investigation of the effects
of both chain-of-thought reasoning and Outlines across
different models and languages. This will include an in-
depth error analysis aimed at understanding when and
why such prompting strategies are effective, and whether
their benefits depend on the structure of the prompt, the
language used for reasoning (e.g., English vs. Italian), or
the intrinsic capabilities of the models themselves.

Finally, we observe a slight improvement in manag-
ing the causal aspect of the relationship rather than the
temporal one, highlighted by the per-class performances.

In the future, we plan to systematically compare the re-
sults obtained without chat-specific templating to those
obtained by prompting each model using its native chat
format. This will help better isolate the impact of in-
struction tuning and formatting on model performance.
Furthermore, although a direct comparison with tradi-
tional NLP systems was beyond the scope of this work,
future research could explore whether LLMs provide a
competitive advantage in explicit causal reasoning (i.e.,
without task-specific training) compared to lightweight,
specialized models. Finally, as part of future work, we
plan to experiment with implicit causality as well. We
also aim to further explore the impact of reasoning and
test-time-compute on the performance of models on both
explicit and implicit causal relations.
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A. Prompt template

An example of the ExpliCITA PCD task, framed as a
multiple-choice prompting task, is provided in the box
below.

Multiple-choice Prompt

# Compito di scelta multipla

## Descrizione del Compito

Ti sara’ fornito un compito. Avrai a disposizione due frasi, Frase 1
e Frase 2, e una lista di parole connettivo. Il tuo compito e’ quello
di scegliere dalla lista di parole connettivo la parola piu’
appropriata per collegare le due frasi in maniera logica e coerente.
La parola scelta dovrebbe essere grammaticalmente e contestualmente
corretta. Per scegliere la parola devi scrivere la lettera
corrispondente alla parola scelta nel campo risposta.

## Formato del Compito
Frase 1: [Frase 1]
Frase 2: [Frase 2]

Opzioni:

A. [parola A]
B. [parola B]
C. [parola C]
D. [parola D]
Risposta: [Lettera dell "opzione corrispondente alla parola corretta]
{% if examples %}

## Esempi

{% for example in examples %}

### Esempio

Frase 1: {{ example.S1 }
Frase 2: {{ example.S2 }

Opzioni:
A. {{ example.
{{ example.
{{ example.
{{ example.

option_A }}
option_B }}
option_C }}
option_D }}

o

Risposta: {{ example.correct_answer }}
{% endfor %}
{% endif %}

## Istruzioni del Compito
1. Leggi attentamente la Frase 1 e la Frase 2;
2. Esamina 1’elenco delle parole fornite;
3. Seleziona 1’opzione corrispondente alla parola che meglio collega
le due frasi, nell ’ordine in cui ti sono fornite, in maniera logica
e coerente. ATTENZIONE: scrivi nel campo "Risposta” «+SOLO«» la
lettera dell *opzione (A, B, C, o D) corrispondente alla parola che
meglio collega le due frasi nel campo risposta, ad esempio
"Risposta: C".
## Compito:
Frase 1: {{ sentence_a }}

}

Frase 2: {{ sentence b }

Opzioni:
{{ options }}

Risposta:
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